01Yassine commited on
Commit
c3ec9ca
·
verified ·
1 Parent(s): 148368a

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +239 -16
index.html CHANGED
@@ -1,19 +1,242 @@
1
  <!doctype html>
2
  <html>
3
- <head>
4
- <meta charset="utf-8" />
5
- <meta name="viewport" content="width=device-width" />
6
- <title>My static Space</title>
7
- <link rel="stylesheet" href="style.css" />
8
- </head>
9
- <body>
10
- <div class="card">
11
- <h1>Welcome to your static Space!</h1>
12
- <p>You can modify this app directly by editing <i>index.html</i> in the Files and versions tab.</p>
13
- <p>
14
- Also don't forget to check the
15
- <a href="https://huggingface.co/docs/hub/spaces" target="_blank">Spaces documentation</a>.
16
- </p>
17
- </div>
18
- </body>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  </html>
 
 
1
  <!doctype html>
2
  <html>
3
+ <head>
4
+ <meta charset="utf-8" />
5
+ <meta name="viewport" content="width=device-width" />
6
+ <title>Iqra’Eval Shared Task</title>
7
+ <link rel="stylesheet" href="style.css" />
8
+ </head>
9
+ <body>
10
+ <div class="card">
11
+ <h1>Iqra’Eval Shared Task</h1>
12
+
13
+ <!-- Overview Section -->
14
+ <h2>Overview</h2>
15
+ <p>
16
+ <strong>Iqra’Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation, where precise articulation is not only valued but essential for correctness according to established Tajweed rules.
17
+ </p>
18
+ <p>
19
+ Participants will develop systems capable of:
20
+ </p>
21
+ <ul>
22
+ <li>Detecting whether a segment of Qur’anic recitation contains pronunciation errors.</li>
23
+ <li>Diagnosing the nature of the error (e.g., substitution, deletion, or insertion of phonemes).</li>
24
+ </ul>
25
+
26
+ <!-- Timeline Section -->
27
+ <h2>Timeline</h2>
28
+ <ul>
29
+ <li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
30
+ <li><strong>June 5, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
31
+ <li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
32
+ <li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
33
+ <li><strong>July 30, 2025</strong>: Final results released</li>
34
+ <li><strong>August 15, 2025</strong>: System description paper submissions due</li>
35
+ <li><strong>August 22, 2025</strong>: Notification of acceptance</li>
36
+ <li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
37
+ </ul>
38
+
39
+ <!-- Task Description -->
40
+ <h2>Task Description</h2>
41
+ <p>
42
+ The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
43
+ </p>
44
+ <ol>
45
+ <li>A speech segment (an audio clip of a Qur’anic verse recitation), and</li>
46
+ <li>A fully vowelized reference transcript (the corresponding Qur’anic text, fully diacritized),</li>
47
+ </ol>
48
+ <p>
49
+ the goal is to identify any pronunciation errors, localize them within the phoneme sequence, and classify the type of error based on Tajweed rules.
50
+ </p>
51
+ <p>
52
+ Each participant’s system must predict the sequence of phonemes that the reciter actually produced. A standardized phonemizer (Nawar Halabi’s phonetizer) will be used to generate the “gold” phoneme sequence from the reference transcript for comparison.
53
+ </p>
54
+ <p>
55
+ <strong>Key subtasks:</strong>
56
+ </p>
57
+ <ul>
58
+ <li>Compare predicted phoneme sequence vs. gold reference.</li>
59
+ <li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
60
+ <li>Localize the error to a specific phoneme index in the utterance.</li>
61
+ <li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
62
+ </ul>
63
+
64
+ <!-- Example & Illustration -->
65
+ <h2>Example</h2>
66
+ <p>
67
+ Suppose the reference verse (fully vowelized) is:
68
+ </p>
69
+ <blockquote>
70
+ <p>
71
+ إِنَّ اللَّهَ عَلَىٰ كُلِّ شَيْءٍ قَدِيرٌ
72
+ <br />
73
+ (inna l-lāha ʿalā kulli shay’in qadīrun)
74
+ </p>
75
+ </blockquote>
76
+ <p>
77
+ The gold phoneme sequence (using the standard phonemizer) might be:
78
+ </p>
79
+ <pre>
80
+ inna l l aa h a ʕ a l a k u l l i ʃ a y ’ i n q a d i r u n
81
+ </pre>
82
+ <p>
83
+ If a reciter mispronounces “قَدِيرٌ” (qadīrun) as “كَدِيرٌ” (kadīrun), that corresponds to a substitution at the very start of that word: phoneme /q/ → /k/.
84
+ </p>
85
+ <p>
86
+ A well-trained system should:
87
+ </p>
88
+ <ol>
89
+ <li>Flag the pronunciation of “قَدِيرٌ” as erroneous,</li>
90
+ <li>Identify that the first phoneme in that word was substituted (“/q/” → “/k/”), and</li>
91
+ <li>Classify it under the Tajweed error category “Ghunnah/Qaf vs. Kaf error.”</li>
92
+ </ol>
93
+ <div style="text-align: center; margin: 1em 0;">
94
+ <img src="images/pronunciation_assessment_arabic.png" alt="Pronunciation Assessment in Arabic" style="max-width: 100%; height: auto;" />
95
+ <p style="font-size: 0.9em; color: #555;">
96
+ <em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
97
+ </p>
98
+ </div>
99
+
100
+ <!-- Evaluation Criteria -->
101
+ <h2>Evaluation Criteria</h2>
102
+ <p>
103
+ Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
104
+ </p>
105
+ <ul>
106
+ <li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
107
+ <li><strong>Localization precision:</strong> Did the system mark the correct positions (indices) in the phoneme sequence where the error(s) occurred?</li>
108
+ <li><strong>Classification F1-score:</strong> Given that an error is detected at a particular position, did the system assign the correct error type (e.g., substitution vs. insertion vs. deletion, plus the specific Tajweed subcategory)?</li>
109
+ </ul>
110
+ <p>
111
+ A final <strong>Composite Error Score (CES)</strong> will be computed by combining:
112
+ </p>
113
+ <ol>
114
+ <li>Boundary-aware detection accuracy (punish off-by-one index errors lightly),</li>
115
+ <li>Per-error-type classification F1-score (substitution, deletion, insertion), and</li>
116
+ <li>Overall phoneme-sequence alignment score (Levenshtein-based alignment to reward correct sequences).
117
+ <!-- Note: Detailed weightings will be released along with the test data. -->
118
+ </li>
119
+ </ol>
120
+ <p>
121
+ <em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
122
+ </p>
123
+
124
+ <!-- Submission Details -->
125
+ <h2>Submission Details (Draft)</h2>
126
+ <p>
127
+ Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
128
+ </p>
129
+ <ul>
130
+ <li><strong>ID:</strong> Unique identifier of the audio sample.</li>
131
+ <li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
132
+ </ul>
133
+ <p>
134
+ Below is a minimal example illustrating the required format:
135
+ </p>
136
+ <pre>
137
+ ID,Labels
138
+ 0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
139
+ 0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
140
+ 0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
141
+
142
+ </pre>
143
+ <p>
144
+ The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
145
+ </p>
146
+ <p>
147
+ <strong>Important:</strong>
148
+ <ul>
149
+ <li>Use UTF-8 encoding.</li>
150
+ <li>Do not include extra spaces at the start or end of each line.</li>
151
+ <li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
152
+ </ul>
153
+ </p>
154
+
155
+ <!-- Dataset Description -->
156
+ <h2>Dataset Description</h2>
157
+ <p>
158
+ All data are hosted on Hugging Face. Two main splits are provided:
159
+ </p>
160
+ <ul>
161
+ <li>
162
+ <strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
163
+ <br />
164
+ <code>df = load_dataset("mostafaashahin/IqraEval_Training_Data", split="train")</code>
165
+ </li>
166
+ <li>
167
+ <strong>Development set (QuranMB):</strong> 3.4 hours reserved for tuning and validation.
168
+ <br />
169
+ <code>df = load_dataset("mostafaashahin/IqraEval_Training_Data", split="dev")</code>
170
+ </li>
171
+ </ul>
172
+ <p>
173
+ A sample submission file (<code>sample_submission.csv</code>) is also provided in the repository.
174
+ </p>
175
+ <p>
176
+ <strong>Column Definitions:</strong>
177
+ </p>
178
+ <ul>
179
+ <li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
180
+ <li><code>q_index</code>: If from the Quran, the verse index (0–6265, including Basmalah); otherwise <code>-1</code>.</li>
181
+ <li><code>start_word_index</code>, <code>end_word_index</code>: Word positions within the verse (or <code>-1</code> if non-Quranic).</li>
182
+ <li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
183
+ <li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
184
+ </ul>
185
+ <p>
186
+ <strong>Data Splits:</strong>
187
+ <br />
188
+ • Training (train): 79 hours total<br />
189
+ • Development (dev): 3.4 hours total
190
+ </p>
191
+
192
+ <!-- Additional TTS Data -->
193
+ <h2>TTS Data (Optional Use)</h2>
194
+ <p>
195
+ We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
196
+ </p>
197
+ <ul>
198
+ <li><code>df_tts = load_dataset("IqraEval/Iqra_TTS", split="train")</code></li>
199
+ </ul>
200
+ <p>
201
+ Researchers who wish to experiment with “synthetic mispronunciations” can use the TTS waveform + forced-alignment pipeline to generate various kinds of pronunciation errors in a controlled manner.
202
+ </p>
203
+
204
+ <!-- Resources & Links -->
205
+ <h2>Resources</h2>
206
+ <ul>
207
+ <li>
208
+ <a href="https://huggingface.co/datasets/mostafaashahin/IqraEval_Training_Data" target="_blank">
209
+ Training &amp; Development Data on Hugging Face
210
+ </a>
211
+ </li>
212
+ <li>
213
+ <a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
214
+ IqraEval_Training_Data (alias)
215
+ </a>
216
+ </li>
217
+ <li>
218
+ <a href="https://huggingface.co/datasets/IqraEval/Iqra_TTS" target="_blank">
219
+ IqraEval TTS Data on Hugging Face
220
+ </a>
221
+ </li>
222
+ <li>
223
+ <a href="https://github.com/Iqra-Eval/interspeech_IqraEval" target="_blank">
224
+ Baseline systems &amp; training scripts (GitHub)
225
+ </a>
226
+ </li>
227
+ </ul>
228
+ <p>
229
+ <em>
230
+ For detailed instructions on data access, phonetizer installation, and baseline usage, please refer to the GitHub README.
231
+ </em>
232
+ </p>
233
+
234
+ <!-- Placeholder for Future Details -->
235
+ <h2>Future Updates</h2>
236
+ <p>
237
+ Further details on <strong>evaluation criteria</strong> (exact scoring weights), <strong>submission templates</strong>, and any clarifications will be posted on the shared task website when test data are released (June 5, 2025). Stay tuned!
238
+ </p>
239
+ </div>
240
+ </body>
241
  </html>
242
+