File size: 30,459 Bytes
52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 fc7ea38 42e1062 52897d7 42e1062 52897d7 42e1062 fc7ea38 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 52897d7 42e1062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html, Input, Output, State, ALL, MATCH
import numpy as np
import random
import math
from collections import defaultdict
import colorsys
from fastapi import HTTPException
from pydantic import BaseModel
from dash import Dash
import dash_bootstrap_components as dbc
from fastapi import HTTPException, APIRouter, Request
router = APIRouter()
# MongoDB connection and data loader function
async def load_data_from_mongodb(userId, topic, year, request: Request):
query = {
"userId": userId,
"topic": topic,
"year": year
}
collection = request.app.state.collection2
document = await collection.find_one(query)
if not document:
raise ValueError(f"No data found for userId={userId}, topic={topic}, year={year}")
# Extract metadata and convert to DataFrame
metadata = document.get("metadata", [])
df = pd.DataFrame(metadata)
df['publication_date'] = pd.to_datetime(df['publication_date'])
return df
# Common functions (unchanged)
def filter_by_date_range(dataframe, start_idx, end_idx):
start_date = date_range[start_idx]
end_date = date_range[end_idx]
return dataframe[(dataframe['publication_date'] >= start_date) &
(dataframe['publication_date'] <= end_date)]
def generate_vibrant_colors(n):
base_colors = []
for i in range(n):
hue = (i / n) % 1.0
saturation = random.uniform(0.7, 0.9)
value = random.uniform(0.7, 0.9)
r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
vibrant_color = '#{:02x}{:02x}{:02x}'.format(
int(r * 255),
int(g * 255),
int(b * 255)
)
end_color_r = min(255, int(r * 255 * 1.1))
end_color_g = min(255, int(g * 255 * 1.1))
end_color_b = min(255, int(b * 255 * 1.1))
gradient_end = '#{:02x}{:02x}{:02x}'.format(end_color_r, end_color_g, end_color_b)
base_colors.append({
'start': vibrant_color,
'end': gradient_end
})
extended_colors = base_colors * math.ceil(n/10)
final_colors = []
for i in range(n):
color = extended_colors[i]
jitter = random.uniform(0.9, 1.1)
def jitter_color(hex_color):
r, g, b = [min(255, max(0, int(int(hex_color[j:j+2], 16) * jitter))) for j in (1, 3, 5)]
return f'rgba({r}, {g}, {b}, 0.9)'
final_colors.append({
'start': jitter_color(color['start']),
'end': jitter_color(color['end']).replace('0.9', '0.8')
})
return final_colors
# Knowledge map creator function (unchanged)
def create_knowledge_map(filtered_df, view_type='host'):
color_palette = {
'background': '#1E1E1E',
'card_bg': '#1A2238',
'accent1': '#FF6A3D',
'accent2': '#4ECCA3',
'accent3': '#9D84B7',
'text_light': '#FFFFFF',
'text_dark': '#E0E0E0',
}
if view_type == 'host':
group_col = 'host_organization_name'
id_col = 'host_organization_id'
title = "Host Organization Clusters"
else:
group_col = 'venue'
id_col = 'venue_id'
title = "Publication Venue Clusters"
summary = filtered_df.groupby(group_col).agg(
paper_count=('id', 'count'),
is_oa=('is_oa', 'mean'),
oa_status=('oa_status', lambda x: x.mode()[0] if not x.mode().empty else None),
entity_id=(id_col, 'first')
).reset_index()
paper_count_groups = defaultdict(list)
for _, row in summary.iterrows():
paper_count_groups[row['paper_count']].append(row)
knowledge_map_fig = go.Figure()
sorted_counts = sorted(paper_count_groups.keys(), reverse=True)
vibrant_colors = generate_vibrant_colors(len(sorted_counts))
golden_angle = np.pi * (3 - np.sqrt(5))
spiral_coef = 150
cluster_metadata = {}
max_x, max_y = 500, 500
for i, count in enumerate(sorted_counts):
radius = np.sqrt(i) * spiral_coef
theta = golden_angle * i
cluster_x, cluster_y = radius * np.cos(theta), radius * np.sin(theta)
label_offset_angle = theta + np.pi/4
label_offset_distance = 80 + 4 * np.sqrt(len(paper_count_groups[count]))
label_x = cluster_x + label_offset_distance * np.cos(label_offset_angle)
label_y = cluster_y + label_offset_distance * np.sin(label_offset_angle)
cluster_metadata[count] = {
'center_x': cluster_x,
'center_y': cluster_y,
'entities': paper_count_groups[count],
'color': vibrant_colors[i]
}
entities = paper_count_groups[count]
num_entities = len(entities)
cluster_size = min(200, max(80, 40 + 8 * np.sqrt(num_entities)))
color = vibrant_colors[i]
knowledge_map_fig.add_shape(
type="circle",
x0=cluster_x - cluster_size/2, y0=cluster_y - cluster_size/2,
x1=cluster_x + cluster_size/2, y1=cluster_y + cluster_size/2,
fillcolor=color['end'].replace("0.8", "0.15"),
line=dict(color=color['start'], width=1.5),
opacity=0.7
)
knowledge_map_fig.add_trace(go.Scatter(
x=[cluster_x], y=[cluster_y],
mode='markers',
marker=dict(size=cluster_size, color=color['start'], opacity=0.3),
customdata=[[count, "cluster"]],
hoverinfo='skip'
))
knowledge_map_fig.add_trace(go.Scatter(
x=[cluster_x, label_x], y=[cluster_y, label_y],
mode='lines',
line=dict(color=color['start'], width=1, dash='dot'),
hoverinfo='skip'
))
knowledge_map_fig.add_annotation(
x=label_x, y=label_y,
text=f"{count} papers<br>{num_entities} {'orgs' if view_type == 'host' else 'venues'}",
showarrow=False,
font=dict(size=11, color='white'),
bgcolor=color['start'],
bordercolor='white',
borderwidth=1,
opacity=0.9
)
entities_sorted = sorted(entities, key=lambda x: x[group_col])
inner_spiral_coef = 0.4
for j, entity_data in enumerate(entities_sorted):
spiral_radius = np.sqrt(j) * cluster_size * inner_spiral_coef / np.sqrt(num_entities + 1)
spiral_angle = golden_angle * j
jitter_radius = random.uniform(0.9, 1.1) * spiral_radius
jitter_angle = spiral_angle + random.uniform(-0.1, 0.1)
entity_x = cluster_x + jitter_radius * np.cos(jitter_angle)
entity_y = cluster_y + jitter_radius * np.sin(jitter_angle)
node_size = min(18, max(8, np.sqrt(entity_data['paper_count']) * 1.5))
knowledge_map_fig.add_trace(go.Scatter(
x=[entity_x], y=[entity_y],
mode='markers',
marker=dict(
size=node_size,
color=color['start'],
line=dict(color='rgba(255, 255, 255, 0.9)', width=1.5)
),
customdata=[[
entity_data[group_col],
entity_data['paper_count'],
entity_data['is_oa'],
entity_data['entity_id'],
count,
"entity"
]],
hovertemplate=(
f"<b>{entity_data[group_col]}</b><br>"
f"Papers: {entity_data['paper_count']}<br>"
f"Open Access: {entity_data['is_oa']:.1%}<extra></extra>"
)
))
max_x = max([abs(cluster['center_x']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
max_y = max([abs(cluster['center_y']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
knowledge_map_fig.update_layout(
title=dict(
text=title,
font=dict(size=22, family='"Poppins", sans-serif', color=color_palette['accent1'])
),
plot_bgcolor='rgba(26, 34, 56, 1)',
paper_bgcolor='rgba(26, 34, 56, 0.7)',
xaxis=dict(range=[-max(700, max_x), max(700, max_x)], showticklabels=False, showgrid=False),
yaxis=dict(range=[-max(500, max_y), max(500, max_y)], showticklabels=False, showgrid=False),
margin=dict(l=10, r=10, t=60, b=10),
height=700,
hovermode='closest',
showlegend=False,
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
)
return knowledge_map_fig, cluster_metadata
# Other chart functions (unchanged)
def create_oa_pie_fig(filtered_df):
color_palette = {
'background': '#1A2238',
'card_bg': '#1A2238',
'accent1': '#FF6A3D',
'accent2': '#4ECCA3',
'accent3': '#9D84B7',
'text_light': '#FFFFFF',
'text_dark': '#FFFFFF',
}
fig = px.pie(
filtered_df, names='is_oa', title="Overall Open Access Status",
labels={True: "Open Access", False: "Not Open Access"},
color_discrete_sequence=[color_palette['accent2'], color_palette['accent1']]
)
fig.update_traces(
textinfo='label+percent',
textfont=dict(size=14, family='"Poppins", sans-serif'),
marker=dict(line=dict(color='#1A2238', width=2))
)
fig.update_layout(
title=dict(
text="Overall Open Access Status",
font=dict(size=18, family='"Poppins", sans-serif', color=color_palette['accent1'])
),
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
paper_bgcolor=color_palette['background'],
plot_bgcolor=color_palette['background'],
margin=dict(t=50, b=20, l=20, r=20),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=12, color=color_palette['text_light'])
)
)
return fig
def create_oa_status_pie_fig(filtered_df):
custom_colors = [
"#9D84B7",
'#4DADFF',
'#FFD166',
'#06D6A0',
'#EF476F'
]
fig = px.pie(
filtered_df,
names='oa_status',
title="Open Access Status Distribution",
color_discrete_sequence=custom_colors
)
fig.update_traces(
textinfo='label+percent',
insidetextorientation='radial',
textfont=dict(size=14, family='"Poppins", sans-serif'),
marker=dict(line=dict(color='#FFFFFF', width=2))
)
fig.update_layout(
title=dict(
text="Open Access Status Distribution",
font=dict(size=18, family='"Poppins", sans-serif', color="#FF6A3D")
),
font=dict(family='"Poppins", sans-serif', color='#FFFFFF'),
paper_bgcolor='#1A2238',
plot_bgcolor='#1A2238',
margin=dict(t=50, b=20, l=20, r=20),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=12, color='#FFFFFF')
)
)
return fig
def create_type_bar_fig(filtered_df):
type_counts = filtered_df['type'].value_counts()
vibrant_colors = [
'#4361EE', '#3A0CA3', '#4CC9F0',
'#F72585', '#7209B7', '#B5179E',
'#480CA8', '#560BAD', '#F77F00'
]
fig = px.bar(
type_counts,
title="Publication Types",
labels={'value': 'Count', 'index': 'Type'},
color=type_counts.index,
color_discrete_sequence=vibrant_colors[:len(type_counts)]
)
fig.update_traces(
marker_line_width=1,
marker_line_color='rgba(0, 0, 0, 0.5)',
opacity=0.9,
hovertemplate='%{y} publications<extra></extra>',
texttemplate='%{y}',
textposition='outside',
textfont=dict(size=14, color='white')
)
fig.update_layout(
title=dict(
text="Publication Types",
font=dict(size=20, family='"Poppins", sans-serif', color="#FF6A3D")
),
xaxis_title="Type",
yaxis_title="Count",
font=dict(family='"Poppins", sans-serif', color="#FFFFFF", size=14),
paper_bgcolor='#1A2238',
plot_bgcolor='#1A2238',
margin=dict(t=70, b=60, l=60, r=40),
xaxis=dict(
tickfont=dict(size=14, color="#FFFFFF"),
tickangle=-45,
gridcolor='rgba(255, 255, 255, 0.1)'
),
yaxis=dict(
tickfont=dict(size=14, color="#FFFFFF"),
gridcolor='rgba(255, 255, 255, 0.1)'
),
bargap=0.3,
)
return fig
# Pydantic model for request validation
class DashboardRequest(BaseModel):
userId: str
topic: str
year: int
@router.post("/load_and_display_dashboard/")
async def load_and_display_dashboard(request: DashboardRequest, req: Request):
try:
# Load data from MongoDB
df = await load_data_from_mongodb(request.userId, request.topic, request.year, req)
# Get date range for the slider
global min_date, max_date, date_range, date_marks
min_date = df['publication_date'].min()
max_date = df['publication_date'].max()
date_range = pd.date_range(start=min_date, end=max_date, freq='MS')
date_marks = {i: date.strftime('%b %Y') for i, date in enumerate(date_range)}
# Create and run dashboard
create_and_run_dashboard(df, request.topic)
base_url = str(req.base_url)
venue_redirect_url = f"{base_url}venue_redirect/{request.userId}/{request.topic}/{request.year}"
# Return response with redirect info - but DON'T open browser here
return {
"status": "success",
"message": "Dashboard ready at /venues/",
"redirect": "/venues/",
"open_url": venue_redirect_url
}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
venue_dash_app = None
def create_and_run_dashboard(df, topic):
global venue_dash_app
from app import get_or_create_venue_dash_app
venue_dash_app = get_or_create_venue_dash_app()
# Clear previous cluster metadata
if hasattr(venue_dash_app, 'cluster_metadata'):
venue_dash_app.cluster_metadata.clear()
# Define color palette and styles
color_palette = {
'background': '#1A2238',
'card_bg': '#F8F8FF',
'accent1': '#FF6A3D',
'accent2': '#4ECCA3',
'accent3': '#9D84B7',
'text_light': '#FFFFFF',
'text_dark': '#2D3748',
}
container_style = {
'padding': '5px',
'backgroundColor': color_palette['text_dark'],
'borderRadius': '12px',
'boxShadow': '0 4px 12px rgba(0, 0, 0, 0.15)',
'marginBottom': '25px',
'border': f'1px solid rgba(255, 255, 255, 0.2)',
}
hidden_style = {**container_style, 'display': 'none'}
visible_style = {**container_style}
# Create the layout
venue_dash_app.layout = html.Div([
html.Div([
html.H1(topic.capitalize() + " Analytics Dashboard", style={
'textAlign': 'center',
'marginBottom': '10px',
'color': color_palette['accent1'],
'fontSize': '2.5rem',
'fontWeight': '700',
'letterSpacing': '0.5px',
}),
html.Div([
html.P("Research Publication Analysis & Knowledge Mapping", style={
'textAlign': 'center',
'color': color_palette['text_light'],
'opacity': '0.8',
'fontSize': '1.2rem',
'marginTop': '0',
})
])
], style={
'background': f'linear-gradient(135deg, {color_palette["background"]}, #364156)',
'padding': '30px 20px',
'borderRadius': '12px',
'marginBottom': '25px',
'boxShadow': '0 4px 20px rgba(0, 0, 0, 0.2)',
}),
# Controls section
html.Div([
html.Div([
html.Button(
id='view-toggle',
children='Switch to Venue View',
style={
'padding': '12px 20px',
'fontSize': '1rem',
'borderRadius': '8px',
'border': 'none',
'backgroundColor': color_palette['accent1'],
'color': 'white',
'cursor': 'pointer',
'boxShadow': '0 2px 5px rgba(0, 0, 0, 0.1)',
'transition': 'all 0.3s ease',
'marginRight': '20px',
'fontWeight': '500',
}
),
html.H3("Filter by Publication Date", style={
'marginBottom': '15px',
'color': color_palette['text_dark'],
'fontSize': '1.3rem',
'fontWeight': '600',
}),
], style={'display': 'flex', 'alignItems': 'center', 'marginBottom': '15px'}),
dcc.RangeSlider(
id='date-slider',
min=0,
max=len(date_range) - 1,
value=[0, len(date_range) - 1],
marks=date_marks if len(date_marks) <= 12 else {
i: date_marks[i] for i in range(0, len(date_range), max(1, len(date_range) // 12))
},
step=1,
tooltip={"placement": "bottom", "always_visible": True},
updatemode='mouseup'
),
html.Div(id='date-range-display', style={
'textAlign': 'center',
'marginTop': '12px',
'fontSize': '1.1rem',
'fontWeight': '500',
'color': color_palette['accent1'],
})
], style={**container_style, 'marginBottom': '25px'}),
# Knowledge map
html.Div([
dcc.Graph(
id='knowledge-map',
style={'width': '100%', 'height': '700px'},
config={'scrollZoom': True, 'displayModeBar': True, 'responsive': True}
)
], style={
**container_style,
'height': '750px',
'marginBottom': '25px',
'background': f'linear-gradient(to bottom right, {color_palette["card_bg"]}, #F0F0F8)',
}),
# Details container
html.Div([
html.H3(id='details-title', style={
'marginBottom': '15px',
'color': color_palette['accent1'],
'fontSize': '1.4rem',
'fontWeight': '600',
}),
html.Div(id='details-content', style={
'maxHeight': '350px',
'overflowY': 'auto',
'padding': '10px',
'borderRadius': '8px',
'backgroundColor': 'rgba(255, 255, 255, 0.7)',
})
], id='details-container', style=hidden_style),
# Charts in flex container
html.Div([
html.Div([
dcc.Graph(
id='oa-pie-chart',
style={'width': '100%', 'height': '350px'},
config={'displayModeBar': False, 'responsive': True}
)
], style={
'flex': 1,
**container_style,
'margin': '0 10px',
'height': '400px',
'transition': 'transform 0.3s ease',
':hover': {'transform': 'translateY(-5px)'},
}),
html.Div([
dcc.Graph(
id='oa-status-pie-chart',
style={'width': '100%', 'height': '350px'},
config={'displayModeBar': False, 'responsive': True}
)
], style={
'flex': 1,
**container_style,
'margin': '0 10px',
'height': '400px',
'transition': 'transform 0.3s ease',
':hover': {'transform': 'translateY(-5px)'},
})
], style={'display': 'flex', 'marginBottom': '25px', 'height': '420px'}),
# Bar chart
html.Div([
dcc.Graph(
id='type-bar-chart',
style={'width': '100%', 'height': '50vh'},
config={'displayModeBar': False, 'responsive': True}
)
], style={
**container_style,
'height': '500px',
'background': 'rgba(26, 34, 56, 1)',
'marginBottom': '10px',
}),
# Store components
dcc.Store(id='filtered-df-info'),
dcc.Store(id='current-view', data='host'),
html.Div(id='load-trigger', children=f"trigger-{pd.Timestamp.now().timestamp()}", style={'display': 'none'})
], style={
'fontFamily': '"Poppins", "Segoe UI", Arial, sans-serif',
'backgroundColor': '#121212',
'padding': '30px',
'maxWidth': '1800px',
'margin': '0 auto',
'minHeight': '100vh',
'color': color_palette['text_light'],
'paddingBottom': '10px',
})
# Callbacks
@venue_dash_app.callback(
[Output('current-view', 'data'),
Output('view-toggle', 'children')],
[Input('view-toggle', 'n_clicks')],
[State('current-view', 'data')]
)
def toggle_view(n_clicks, current_view):
if not n_clicks:
return current_view, 'Switch to Venue View' if current_view == 'host' else 'Switch to Host View'
new_view = 'venue' if current_view == 'host' else 'host'
new_button_text = 'Switch to Host View' if new_view == 'venue' else 'Switch to Venue View'
return new_view, new_button_text
@venue_dash_app.callback(
Output('date-range-display', 'children'),
[Input('date-slider', 'value')]
)
def update_date_range_display(date_range_indices):
start_date = date_range[date_range_indices[0]]
end_date = date_range[date_range_indices[1]]
return f"Selected period: {start_date.strftime('%b %Y')} to {end_date.strftime('%b %Y')}"
@venue_dash_app.callback(
[Output('knowledge-map', 'figure'),
Output('oa-pie-chart', 'figure'),
Output('oa-status-pie-chart', 'figure'),
Output('type-bar-chart', 'figure'),
Output('filtered-df-info', 'data'),
Output('details-container', 'style')],
[Input('date-slider', 'value'),
Input('current-view', 'data'),
Input('load-trigger', 'children')] # Trigger updates
)
def update_visualizations(date_range_indices, current_view, _):
# Filter data based on date range
filtered_df = filter_by_date_range(df, date_range_indices[0], date_range_indices[1])
# Generate knowledge map
knowledge_map_fig, cluster_metadata = create_knowledge_map(filtered_df, current_view)
venue_dash_app.cluster_metadata = cluster_metadata
# Prepare metadata for storage
filtered_info = {
'start_idx': date_range_indices[0],
'end_idx': date_range_indices[1],
'start_date': date_range[date_range_indices[0]].strftime('%Y-%m-%d'),
'end_date': date_range[date_range_indices[1]].strftime('%Y-%m-%d'),
'record_count': len(filtered_df),
'view_type': current_view
}
# Return updated figures and metadata
return (
knowledge_map_fig,
create_oa_pie_fig(filtered_df),
create_oa_status_pie_fig(filtered_df),
create_type_bar_fig(filtered_df),
filtered_info,
hidden_style
)
@venue_dash_app.callback(
[Output('details-container', 'style', allow_duplicate=True),
Output('details-title', 'children'),
Output('details-content', 'children')],
[Input('knowledge-map', 'clickData')],
[State('filtered-df-info', 'data')],
prevent_initial_call=True
)
def display_details(clickData, filtered_info):
if not clickData or not filtered_info:
return hidden_style, "", []
customdata = clickData['points'][0]['customdata']
view_type = filtered_info['view_type']
entity_type = "Organization" if view_type == 'host' else "Venue"
if len(customdata) >= 2 and customdata[-1] == "cluster":
count = customdata[0]
if count not in venue_dash_app.cluster_metadata:
return hidden_style, "", []
entities = venue_dash_app.cluster_metadata[count]['entities']
color = venue_dash_app.cluster_metadata[count]['color']['start']
table_header = [
html.Thead(html.Tr([
html.Th(f"{entity_type} Name", style={'padding': '8px'}),
html.Th(f"{entity_type} ID", style={'padding': '8px'}),
html.Th("Papers", style={'padding': '8px', 'textAlign': 'center'}),
html.Th("Open Access %", style={'padding': '8px', 'textAlign': 'center'})
], style={'backgroundColor': color_palette['accent1'], 'color': 'white'}))
]
rows = []
for entity in sorted(entities, key=lambda x: x['paper_count'], reverse=True):
entity_name_link = html.A(
entity[f"{view_type}_organization_name" if view_type == 'host' else "venue"],
href=entity['entity_id'],
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
entity_id_link = html.A(
entity['entity_id'].split('/')[-1],
href=entity['entity_id'],
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
rows.append(html.Tr([
html.Td(entity_name_link, style={'padding': '8px'}),
html.Td(entity_id_link, style={'padding': '8px'}),
html.Td(entity['paper_count'], style={'padding': '8px', 'textAlign': 'center'}),
html.Td(f"{entity['is_oa']:.1%}", style={'padding': '8px', 'textAlign': 'center'})
]))
table = html.Table(table_header + [html.Tbody(rows)], style={
'width': '100%',
'borderCollapse': 'collapse',
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
})
return (
visible_style,
f"{entity_type}s with {count} papers",
[html.P(f"Showing {len(entities)} {entity_type.lower()}s during selected period"), table]
)
elif len(customdata) >= 6 and customdata[-1] == "entity":
entity_name = customdata[0]
entity_id = customdata[3]
cluster_count = customdata[4]
color = venue_dash_app.cluster_metadata[cluster_count]['color']['start']
if view_type == 'host':
entity_papers = df[df['host_organization_name'] == entity_name].copy()
else:
entity_papers = df[df['venue'] == entity_name].copy()
entity_papers = entity_papers[
(entity_papers['publication_date'] >= pd.to_datetime(filtered_info['start_date'])) &
(entity_papers['publication_date'] <= pd.to_datetime(filtered_info['end_date']))
]
entity_name_link = html.A(
entity_name,
href=entity_id,
target="_blank",
style={'color': color, 'textDecoration': 'underline', 'fontSize': '1.2em'}
)
entity_id_link = html.A(
entity_id.split('/')[-1],
href=entity_id,
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
header = [
html.Div([
html.Span("Name: ", style={'fontWeight': 'bold'}),
entity_name_link
], style={'marginBottom': '10px'}),
html.Div([
html.Span("ID: ", style={'fontWeight': 'bold'}),
entity_id_link
], style={'marginBottom': '10px'}),
html.Div([
html.Span(f"Papers: {len(entity_papers)}", style={'marginRight': '20px'}),
], style={'marginBottom': '20px'})
]
table_header = [
html.Thead(html.Tr([
html.Th("Paper ID", style={'padding': '8px'}),
html.Th("Type", style={'padding': '8px'}),
html.Th("OA Status", style={'padding': '8px', 'textAlign': 'center'}),
html.Th("Publication Date", style={'padding': '8px', 'textAlign': 'center'})
], style={'backgroundColor': color, 'color': 'white'}))
]
rows = []
for _, paper in entity_papers.sort_values('publication_date', ascending=False).iterrows():
paper_link = html.A(
paper['id'],
href=paper['id'],
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
rows.append(html.Tr([
html.Td(paper_link, style={'padding': '8px'}),
html.Td(paper['type'], style={'padding': '8px'}),
html.Td(paper['oa_status'], style={'padding': '8px', 'textAlign': 'center'}),
html.Td(paper['publication_date'].strftime('%Y-%m-%d'), style={'padding': '8px', 'textAlign': 'center'})
]))
table = html.Table(table_header + [html.Tbody(rows)], style={
'width': '100%',
'borderCollapse': 'collapse',
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
})
return visible_style, f"{entity_type} Papers", header + [table]
return hidden_style, "", []
return None |