File size: 30,459 Bytes
52897d7
 
 
42e1062
52897d7
 
 
 
 
 
 
42e1062
 
52897d7
 
42e1062
52897d7
 
42e1062
52897d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e1062
 
 
 
 
 
 
 
52897d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
 
52897d7
 
 
 
 
42e1062
 
 
 
 
 
 
52897d7
 
 
 
 
 
 
 
 
42e1062
52897d7
 
 
 
42e1062
52897d7
 
42e1062
 
52897d7
 
 
 
 
 
 
 
 
 
 
42e1062
52897d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e1062
52897d7
 
 
 
 
 
 
 
 
 
 
 
42e1062
52897d7
 
 
 
 
 
 
 
 
 
 
 
 
 
42e1062
 
 
 
 
 
 
 
 
52897d7
 
 
42e1062
52897d7
 
 
42e1062
 
 
 
52897d7
42e1062
52897d7
42e1062
52897d7
 
42e1062
 
52897d7
42e1062
52897d7
 
 
 
 
 
 
 
 
 
42e1062
52897d7
 
 
 
 
 
 
 
 
42e1062
 
fc7ea38
 
42e1062
 
 
 
 
 
 
 
 
52897d7
42e1062
52897d7
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7ea38
42e1062
52897d7
42e1062
 
 
52897d7
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52897d7
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52897d7
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52897d7
42e1062
 
 
 
 
52897d7
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52897d7
42e1062
 
 
 
 
 
 
 
 
 
 
 
 
52897d7
42e1062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html, Input, Output, State, ALL, MATCH
import numpy as np
import random
import math
from collections import defaultdict
import colorsys
from fastapi import HTTPException
from pydantic import BaseModel
from dash import Dash
import dash_bootstrap_components as dbc
from fastapi import HTTPException, APIRouter, Request

router = APIRouter()

# MongoDB connection and data loader function
async def load_data_from_mongodb(userId, topic, year, request: Request):
    query = {
        "userId": userId,
        "topic": topic,
        "year": year
    }
    collection = request.app.state.collection2
    document = await collection.find_one(query)
    if not document:
        raise ValueError(f"No data found for userId={userId}, topic={topic}, year={year}")
    # Extract metadata and convert to DataFrame
    metadata = document.get("metadata", [])
    df = pd.DataFrame(metadata)
    df['publication_date'] = pd.to_datetime(df['publication_date'])
    return df

# Common functions (unchanged)
def filter_by_date_range(dataframe, start_idx, end_idx):
    start_date = date_range[start_idx]
    end_date = date_range[end_idx]
    return dataframe[(dataframe['publication_date'] >= start_date) & 
                    (dataframe['publication_date'] <= end_date)]

def generate_vibrant_colors(n):
    base_colors = []
    for i in range(n):
        hue = (i / n) % 1.0
        saturation = random.uniform(0.7, 0.9)
        value = random.uniform(0.7, 0.9)
        r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
        vibrant_color = '#{:02x}{:02x}{:02x}'.format(
            int(r * 255), 
            int(g * 255), 
            int(b * 255)
        )
        end_color_r = min(255, int(r * 255 * 1.1))
        end_color_g = min(255, int(g * 255 * 1.1))
        end_color_b = min(255, int(b * 255 * 1.1))
        gradient_end = '#{:02x}{:02x}{:02x}'.format(end_color_r, end_color_g, end_color_b)
        base_colors.append({
            'start': vibrant_color,
            'end': gradient_end
        })
    extended_colors = base_colors * math.ceil(n/10)
    final_colors = []
    for i in range(n):
        color = extended_colors[i]
        jitter = random.uniform(0.9, 1.1)
        def jitter_color(hex_color):
            r, g, b = [min(255, max(0, int(int(hex_color[j:j+2], 16) * jitter))) for j in (1, 3, 5)]
            return f'rgba({r}, {g}, {b}, 0.9)'
        final_colors.append({
            'start': jitter_color(color['start']),
            'end': jitter_color(color['end']).replace('0.9', '0.8')
        })
    return final_colors

# Knowledge map creator function (unchanged)
def create_knowledge_map(filtered_df, view_type='host'):
    color_palette = {
        'background': '#1E1E1E',
        'card_bg': '#1A2238',
        'accent1': '#FF6A3D',
        'accent2': '#4ECCA3',
        'accent3': '#9D84B7',
        'text_light': '#FFFFFF',
        'text_dark': '#E0E0E0',
    }
    if view_type == 'host':
        group_col = 'host_organization_name'
        id_col = 'host_organization_id'
        title = "Host Organization Clusters"
    else:
        group_col = 'venue'
        id_col = 'venue_id'
        title = "Publication Venue Clusters"
    summary = filtered_df.groupby(group_col).agg(
        paper_count=('id', 'count'),
        is_oa=('is_oa', 'mean'),
        oa_status=('oa_status', lambda x: x.mode()[0] if not x.mode().empty else None),
        entity_id=(id_col, 'first')
    ).reset_index()
    paper_count_groups = defaultdict(list)
    for _, row in summary.iterrows():
        paper_count_groups[row['paper_count']].append(row)
    knowledge_map_fig = go.Figure()
    sorted_counts = sorted(paper_count_groups.keys(), reverse=True)
    vibrant_colors = generate_vibrant_colors(len(sorted_counts))
    golden_angle = np.pi * (3 - np.sqrt(5))
    spiral_coef = 150
    cluster_metadata = {}
    max_x, max_y = 500, 500
    for i, count in enumerate(sorted_counts):
        radius = np.sqrt(i) * spiral_coef
        theta = golden_angle * i
        cluster_x, cluster_y = radius * np.cos(theta), radius * np.sin(theta)
        label_offset_angle = theta + np.pi/4
        label_offset_distance = 80 + 4 * np.sqrt(len(paper_count_groups[count]))
        label_x = cluster_x + label_offset_distance * np.cos(label_offset_angle)
        label_y = cluster_y + label_offset_distance * np.sin(label_offset_angle)
        cluster_metadata[count] = {
            'center_x': cluster_x,
            'center_y': cluster_y,
            'entities': paper_count_groups[count],
            'color': vibrant_colors[i]
        }
        entities = paper_count_groups[count]
        num_entities = len(entities)
        cluster_size = min(200, max(80, 40 + 8 * np.sqrt(num_entities)))
        color = vibrant_colors[i]
        knowledge_map_fig.add_shape(
            type="circle",
            x0=cluster_x - cluster_size/2, y0=cluster_y - cluster_size/2,
            x1=cluster_x + cluster_size/2, y1=cluster_y + cluster_size/2,
            fillcolor=color['end'].replace("0.8", "0.15"),
            line=dict(color=color['start'], width=1.5),
            opacity=0.7
        )
        knowledge_map_fig.add_trace(go.Scatter(
            x=[cluster_x], y=[cluster_y],
            mode='markers',
            marker=dict(size=cluster_size, color=color['start'], opacity=0.3),
            customdata=[[count, "cluster"]],
            hoverinfo='skip'
        ))
        knowledge_map_fig.add_trace(go.Scatter(
            x=[cluster_x, label_x], y=[cluster_y, label_y],
            mode='lines',
            line=dict(color=color['start'], width=1, dash='dot'),
            hoverinfo='skip'
        ))
        knowledge_map_fig.add_annotation(
            x=label_x, y=label_y,
            text=f"{count} papers<br>{num_entities} {'orgs' if view_type == 'host' else 'venues'}",
            showarrow=False,
            font=dict(size=11, color='white'),
            bgcolor=color['start'],
            bordercolor='white',
            borderwidth=1,
            opacity=0.9
        )
        entities_sorted = sorted(entities, key=lambda x: x[group_col])
        inner_spiral_coef = 0.4
        for j, entity_data in enumerate(entities_sorted):
            spiral_radius = np.sqrt(j) * cluster_size * inner_spiral_coef / np.sqrt(num_entities + 1)
            spiral_angle = golden_angle * j
            jitter_radius = random.uniform(0.9, 1.1) * spiral_radius
            jitter_angle = spiral_angle + random.uniform(-0.1, 0.1)
            entity_x = cluster_x + jitter_radius * np.cos(jitter_angle)
            entity_y = cluster_y + jitter_radius * np.sin(jitter_angle)
            node_size = min(18, max(8, np.sqrt(entity_data['paper_count']) * 1.5))
            knowledge_map_fig.add_trace(go.Scatter(
                x=[entity_x], y=[entity_y],
                mode='markers',
                marker=dict(
                    size=node_size,
                    color=color['start'],
                    line=dict(color='rgba(255, 255, 255, 0.9)', width=1.5)
                ),
                customdata=[[
                    entity_data[group_col],
                    entity_data['paper_count'],
                    entity_data['is_oa'],
                    entity_data['entity_id'],
                    count,
                    "entity"
                ]],
                hovertemplate=(
                    f"<b>{entity_data[group_col]}</b><br>"
                    f"Papers: {entity_data['paper_count']}<br>"
                    f"Open Access: {entity_data['is_oa']:.1%}<extra></extra>"
                )
            ))
    max_x = max([abs(cluster['center_x']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
    max_y = max([abs(cluster['center_y']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
    knowledge_map_fig.update_layout(
        title=dict(
            text=title, 
            font=dict(size=22, family='"Poppins", sans-serif', color=color_palette['accent1'])
        ),
        plot_bgcolor='rgba(26, 34, 56, 1)',
        paper_bgcolor='rgba(26, 34, 56, 0.7)',
        xaxis=dict(range=[-max(700, max_x), max(700, max_x)], showticklabels=False, showgrid=False),
        yaxis=dict(range=[-max(500, max_y), max(500, max_y)], showticklabels=False, showgrid=False),
        margin=dict(l=10, r=10, t=60, b=10),
        height=700,
        hovermode='closest',
        showlegend=False,
        font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
    )
    return knowledge_map_fig, cluster_metadata

# Other chart functions (unchanged)
def create_oa_pie_fig(filtered_df):
    color_palette = {
        'background': '#1A2238',
        'card_bg': '#1A2238',
        'accent1': '#FF6A3D',
        'accent2': '#4ECCA3',
        'accent3': '#9D84B7',
        'text_light': '#FFFFFF',
        'text_dark': '#FFFFFF',
    }
    fig = px.pie(
        filtered_df, names='is_oa', title="Overall Open Access Status",
        labels={True: "Open Access", False: "Not Open Access"},
        color_discrete_sequence=[color_palette['accent2'], color_palette['accent1']]
    )
    fig.update_traces(
        textinfo='label+percent', 
        textfont=dict(size=14, family='"Poppins", sans-serif'),
        marker=dict(line=dict(color='#1A2238', width=2))
    )
    fig.update_layout(
        title=dict(
            text="Overall Open Access Status", 
            font=dict(size=18, family='"Poppins", sans-serif', color=color_palette['accent1'])
        ),
        font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
        paper_bgcolor=color_palette['background'],
        plot_bgcolor=color_palette['background'],
        margin=dict(t=50, b=20, l=20, r=20),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=-0.2,
            xanchor="center",
            x=0.5,
            font=dict(size=12, color=color_palette['text_light'])
        )
    )
    return fig

def create_oa_status_pie_fig(filtered_df):
    custom_colors = [
       "#9D84B7", 
        '#4DADFF', 
        '#FFD166', 
        '#06D6A0', 
        '#EF476F'
    ]
    fig = px.pie(
        filtered_df, 
        names='oa_status', 
        title="Open Access Status Distribution",
        color_discrete_sequence=custom_colors
    )
    fig.update_traces(
        textinfo='label+percent', 
        insidetextorientation='radial',
        textfont=dict(size=14, family='"Poppins", sans-serif'),
        marker=dict(line=dict(color='#FFFFFF', width=2))
    )
    fig.update_layout(
        title=dict(
            text="Open Access Status Distribution", 
            font=dict(size=18, family='"Poppins", sans-serif', color="#FF6A3D")
        ),
        font=dict(family='"Poppins", sans-serif', color='#FFFFFF'),
        paper_bgcolor='#1A2238',
        plot_bgcolor='#1A2238',
        margin=dict(t=50, b=20, l=20, r=20),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=-0.2,
            xanchor="center",
            x=0.5,
            font=dict(size=12, color='#FFFFFF')
        )
    )
    return fig

def create_type_bar_fig(filtered_df):
    type_counts = filtered_df['type'].value_counts()
    vibrant_colors = [
        '#4361EE', '#3A0CA3', '#4CC9F0', 
        '#F72585', '#7209B7', '#B5179E', 
        '#480CA8', '#560BAD', '#F77F00'
    ]
    fig = px.bar(
        type_counts, 
        title="Publication Types",
        labels={'value': 'Count', 'index': 'Type'},
        color=type_counts.index,
        color_discrete_sequence=vibrant_colors[:len(type_counts)]
    )
    fig.update_traces(
        marker_line_width=1,
        marker_line_color='rgba(0, 0, 0, 0.5)',
        opacity=0.9,
        hovertemplate='%{y} publications<extra></extra>',
        texttemplate='%{y}',
        textposition='outside',
        textfont=dict(size=14, color='white')
    )
    fig.update_layout(
        title=dict(
            text="Publication Types", 
            font=dict(size=20, family='"Poppins", sans-serif', color="#FF6A3D")
        ),
        xaxis_title="Type", 
        yaxis_title="Count",
        font=dict(family='"Poppins", sans-serif', color="#FFFFFF", size=14),
        paper_bgcolor='#1A2238',
        plot_bgcolor='#1A2238',
        margin=dict(t=70, b=60, l=60, r=40),
        xaxis=dict(
            tickfont=dict(size=14, color="#FFFFFF"),
            tickangle=-45,
            gridcolor='rgba(255, 255, 255, 0.1)'
        ),
        yaxis=dict(
            tickfont=dict(size=14, color="#FFFFFF"),
            gridcolor='rgba(255, 255, 255, 0.1)'
        ),
        bargap=0.3,
    )
    return fig

# Pydantic model for request validation
class DashboardRequest(BaseModel):
    userId: str
    topic: str
    year: int

@router.post("/load_and_display_dashboard/")
async def load_and_display_dashboard(request: DashboardRequest, req: Request):
    try:
        # Load data from MongoDB
        df = await load_data_from_mongodb(request.userId, request.topic, request.year, req)
        # Get date range for the slider
        global min_date, max_date, date_range, date_marks
        min_date = df['publication_date'].min()
        max_date = df['publication_date'].max()
        date_range = pd.date_range(start=min_date, end=max_date, freq='MS')
        date_marks = {i: date.strftime('%b %Y') for i, date in enumerate(date_range)}
        # Create and run dashboard
        create_and_run_dashboard(df, request.topic)
        base_url = str(req.base_url)
        venue_redirect_url = f"{base_url}venue_redirect/{request.userId}/{request.topic}/{request.year}"
        # Return response with redirect info - but DON'T open browser here
        return {
            "status": "success", 
            "message": "Dashboard ready at /venues/", 
            "redirect": "/venues/",
            "open_url": venue_redirect_url
        }
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

venue_dash_app = None

def create_and_run_dashboard(df, topic):
    global venue_dash_app
    from app import get_or_create_venue_dash_app
    venue_dash_app = get_or_create_venue_dash_app()
    # Clear previous cluster metadata
    if hasattr(venue_dash_app, 'cluster_metadata'):
        venue_dash_app.cluster_metadata.clear()
    # Define color palette and styles
    color_palette = {
        'background': '#1A2238',
        'card_bg': '#F8F8FF',
        'accent1': '#FF6A3D',
        'accent2': '#4ECCA3',
        'accent3': '#9D84B7',
        'text_light': '#FFFFFF',
        'text_dark': '#2D3748',
    }
    container_style = {
        'padding': '5px', 
        'backgroundColor': color_palette['text_dark'], 
        'borderRadius': '12px', 
        'boxShadow': '0 4px 12px rgba(0, 0, 0, 0.15)', 
        'marginBottom': '25px',
        'border': f'1px solid rgba(255, 255, 255, 0.2)',
    }
    hidden_style = {**container_style, 'display': 'none'}
    visible_style = {**container_style}
    # Create the layout
    venue_dash_app.layout = html.Div([
        html.Div([
            html.H1(topic.capitalize() + " Analytics Dashboard", style={
                'textAlign': 'center', 
                'marginBottom': '10px',
                'color': color_palette['accent1'],
                'fontSize': '2.5rem',
                'fontWeight': '700',
                'letterSpacing': '0.5px',
            }),
            html.Div([
                html.P("Research Publication Analysis & Knowledge Mapping", style={
                    'textAlign': 'center',
                    'color': color_palette['text_light'],
                    'opacity': '0.8',
                    'fontSize': '1.2rem',
                    'marginTop': '0',
                })
            ])
        ], style={
            'background': f'linear-gradient(135deg, {color_palette["background"]}, #364156)',
            'padding': '30px 20px',
            'borderRadius': '12px',
            'marginBottom': '25px',
            'boxShadow': '0 4px 20px rgba(0, 0, 0, 0.2)',
        }),
        # Controls section
        html.Div([
            html.Div([
                html.Button(
                    id='view-toggle',
                    children='Switch to Venue View',
                    style={
                        'padding': '12px 20px',
                        'fontSize': '1rem',
                        'borderRadius': '8px',
                        'border': 'none',
                        'backgroundColor': color_palette['accent1'],
                        'color': 'white',
                        'cursor': 'pointer',
                        'boxShadow': '0 2px 5px rgba(0, 0, 0, 0.1)',
                        'transition': 'all 0.3s ease',
                        'marginRight': '20px',
                        'fontWeight': '500',
                    }
                ),
                html.H3("Filter by Publication Date", style={
                    'marginBottom': '15px',
                    'color': color_palette['text_dark'],
                    'fontSize': '1.3rem',
                    'fontWeight': '600',
                }),
            ], style={'display': 'flex', 'alignItems': 'center', 'marginBottom': '15px'}),
            dcc.RangeSlider(
                id='date-slider',
                min=0,
                max=len(date_range) - 1,
                value=[0, len(date_range) - 1],
                marks=date_marks if len(date_marks) <= 12 else {
                    i: date_marks[i] for i in range(0, len(date_range), max(1, len(date_range) // 12))
                },
                step=1,
                tooltip={"placement": "bottom", "always_visible": True},
                updatemode='mouseup'
            ),
            html.Div(id='date-range-display', style={
                'textAlign': 'center', 
                'marginTop': '12px', 
                'fontSize': '1.1rem',
                'fontWeight': '500',
                'color': color_palette['accent1'],
            })
        ], style={**container_style, 'marginBottom': '25px'}),
        # Knowledge map
        html.Div([
            dcc.Graph(
                id='knowledge-map',
                style={'width': '100%', 'height': '700px'},
                config={'scrollZoom': True, 'displayModeBar': True, 'responsive': True}
            )
        ], style={
            **container_style, 
            'height': '750px', 
            'marginBottom': '25px',
            'background': f'linear-gradient(to bottom right, {color_palette["card_bg"]}, #F0F0F8)',
        }),
        # Details container
        html.Div([
            html.H3(id='details-title', style={
                'marginBottom': '15px',
                'color': color_palette['accent1'],
                'fontSize': '1.4rem',
                'fontWeight': '600',
            }),
            html.Div(id='details-content', style={
                'maxHeight': '350px', 
                'overflowY': 'auto',
                'padding': '10px',
                'borderRadius': '8px',
                'backgroundColor': 'rgba(255, 255, 255, 0.7)',
            })
        ], id='details-container', style=hidden_style),
        # Charts in flex container
        html.Div([
            html.Div([
                dcc.Graph(
                    id='oa-pie-chart', 
                    style={'width': '100%', 'height': '350px'},
                    config={'displayModeBar': False, 'responsive': True}
                )
            ], style={
                'flex': 1, 
                **container_style, 
                'margin': '0 10px', 
                'height': '400px',
                'transition': 'transform 0.3s ease',
                ':hover': {'transform': 'translateY(-5px)'},
            }),
            html.Div([
                dcc.Graph(
                    id='oa-status-pie-chart', 
                    style={'width': '100%', 'height': '350px'},
                    config={'displayModeBar': False, 'responsive': True}
                )
            ], style={
                'flex': 1, 
                **container_style, 
                'margin': '0 10px', 
                'height': '400px',
                'transition': 'transform 0.3s ease',
                ':hover': {'transform': 'translateY(-5px)'},
            })
        ], style={'display': 'flex', 'marginBottom': '25px', 'height': '420px'}),
        # Bar chart
        html.Div([
            dcc.Graph(
                id='type-bar-chart', 
                style={'width': '100%', 'height': '50vh'},
                config={'displayModeBar': False, 'responsive': True}
            )
        ], style={
            **container_style,
            'height': '500px',
            'background': 'rgba(26, 34, 56, 1)',
            'marginBottom': '10px',
        }),
        # Store components
        dcc.Store(id='filtered-df-info'),
        dcc.Store(id='current-view', data='host'),
        html.Div(id='load-trigger', children=f"trigger-{pd.Timestamp.now().timestamp()}", style={'display': 'none'})
    ], style={
        'fontFamily': '"Poppins", "Segoe UI", Arial, sans-serif',
        'backgroundColor': '#121212',
        'padding': '30px',
        'maxWidth': '1800px',
        'margin': '0 auto',
        'minHeight': '100vh',
        'color': color_palette['text_light'],
        'paddingBottom': '10px', 
    })
    # Callbacks
    @venue_dash_app.callback(
        [Output('current-view', 'data'),
         Output('view-toggle', 'children')],
        [Input('view-toggle', 'n_clicks')],
        [State('current-view', 'data')]
    )
    def toggle_view(n_clicks, current_view):
        if not n_clicks:
            return current_view, 'Switch to Venue View' if current_view == 'host' else 'Switch to Host View'
        new_view = 'venue' if current_view == 'host' else 'host'
        new_button_text = 'Switch to Host View' if new_view == 'venue' else 'Switch to Venue View'
        return new_view, new_button_text

    @venue_dash_app.callback(
        Output('date-range-display', 'children'),
        [Input('date-slider', 'value')]
    )
    def update_date_range_display(date_range_indices):
        start_date = date_range[date_range_indices[0]]
        end_date = date_range[date_range_indices[1]]
        return f"Selected period: {start_date.strftime('%b %Y')} to {end_date.strftime('%b %Y')}"

    @venue_dash_app.callback(
        [Output('knowledge-map', 'figure'),
         Output('oa-pie-chart', 'figure'),
         Output('oa-status-pie-chart', 'figure'),
         Output('type-bar-chart', 'figure'),
         Output('filtered-df-info', 'data'),
         Output('details-container', 'style')],
        [Input('date-slider', 'value'),
         Input('current-view', 'data'),
         Input('load-trigger', 'children')]  # Trigger updates
    )
    def update_visualizations(date_range_indices, current_view, _):
        # Filter data based on date range
        filtered_df = filter_by_date_range(df, date_range_indices[0], date_range_indices[1])
        # Generate knowledge map
        knowledge_map_fig, cluster_metadata = create_knowledge_map(filtered_df, current_view)
        venue_dash_app.cluster_metadata = cluster_metadata
        # Prepare metadata for storage
        filtered_info = {
            'start_idx': date_range_indices[0],
            'end_idx': date_range_indices[1],
            'start_date': date_range[date_range_indices[0]].strftime('%Y-%m-%d'),
            'end_date': date_range[date_range_indices[1]].strftime('%Y-%m-%d'),
            'record_count': len(filtered_df),
            'view_type': current_view
        }
        # Return updated figures and metadata
        return (
            knowledge_map_fig,
            create_oa_pie_fig(filtered_df),
            create_oa_status_pie_fig(filtered_df),
            create_type_bar_fig(filtered_df),
            filtered_info,
            hidden_style
        )

    @venue_dash_app.callback(
        [Output('details-container', 'style', allow_duplicate=True),
         Output('details-title', 'children'),
         Output('details-content', 'children')],
        [Input('knowledge-map', 'clickData')],
        [State('filtered-df-info', 'data')],
        prevent_initial_call=True
    )
    def display_details(clickData, filtered_info):
        if not clickData or not filtered_info:
            return hidden_style, "", []
        customdata = clickData['points'][0]['customdata']
        view_type = filtered_info['view_type']
        entity_type = "Organization" if view_type == 'host' else "Venue"
        if len(customdata) >= 2 and customdata[-1] == "cluster":
            count = customdata[0]
            if count not in venue_dash_app.cluster_metadata:
                return hidden_style, "", []
            entities = venue_dash_app.cluster_metadata[count]['entities']
            color = venue_dash_app.cluster_metadata[count]['color']['start']
            table_header = [
                html.Thead(html.Tr([
                    html.Th(f"{entity_type} Name", style={'padding': '8px'}),
                    html.Th(f"{entity_type} ID", style={'padding': '8px'}),
                    html.Th("Papers", style={'padding': '8px', 'textAlign': 'center'}),
                    html.Th("Open Access %", style={'padding': '8px', 'textAlign': 'center'})
                ], style={'backgroundColor': color_palette['accent1'], 'color': 'white'}))
            ]
            rows = []
            for entity in sorted(entities, key=lambda x: x['paper_count'], reverse=True):
                entity_name_link = html.A(
                    entity[f"{view_type}_organization_name" if view_type == 'host' else "venue"],
                    href=entity['entity_id'],
                    target="_blank",
                    style={'color': color, 'textDecoration': 'underline'}
                )
                entity_id_link = html.A(
                    entity['entity_id'].split('/')[-1],
                    href=entity['entity_id'],
                    target="_blank",
                    style={'color': color, 'textDecoration': 'underline'}
                )
                rows.append(html.Tr([
                    html.Td(entity_name_link, style={'padding': '8px'}),
                    html.Td(entity_id_link, style={'padding': '8px'}),
                    html.Td(entity['paper_count'], style={'padding': '8px', 'textAlign': 'center'}),
                    html.Td(f"{entity['is_oa']:.1%}", style={'padding': '8px', 'textAlign': 'center'})
                ]))
            table = html.Table(table_header + [html.Tbody(rows)], style={
                'width': '100%',
                'borderCollapse': 'collapse',
                'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
            })
            return (
                visible_style,
                f"{entity_type}s with {count} papers",
                [html.P(f"Showing {len(entities)} {entity_type.lower()}s during selected period"), table]
            )
        elif len(customdata) >= 6 and customdata[-1] == "entity":
            entity_name = customdata[0]
            entity_id = customdata[3]
            cluster_count = customdata[4]
            color = venue_dash_app.cluster_metadata[cluster_count]['color']['start']
            if view_type == 'host':
                entity_papers = df[df['host_organization_name'] == entity_name].copy()
            else:
                entity_papers = df[df['venue'] == entity_name].copy()
            entity_papers = entity_papers[
                (entity_papers['publication_date'] >= pd.to_datetime(filtered_info['start_date'])) & 
                (entity_papers['publication_date'] <= pd.to_datetime(filtered_info['end_date']))
            ]
            entity_name_link = html.A(
                entity_name,
                href=entity_id,
                target="_blank",
                style={'color': color, 'textDecoration': 'underline', 'fontSize': '1.2em'}
            )
            entity_id_link = html.A(
                entity_id.split('/')[-1],
                href=entity_id,
                target="_blank",
                style={'color': color, 'textDecoration': 'underline'}
            )
            header = [
                html.Div([
                    html.Span("Name: ", style={'fontWeight': 'bold'}),
                    entity_name_link
                ], style={'marginBottom': '10px'}),
                html.Div([
                    html.Span("ID: ", style={'fontWeight': 'bold'}),
                    entity_id_link
                ], style={'marginBottom': '10px'}),
                html.Div([
                    html.Span(f"Papers: {len(entity_papers)}", style={'marginRight': '20px'}),
                ], style={'marginBottom': '20px'})
            ]
            table_header = [
                html.Thead(html.Tr([
                    html.Th("Paper ID", style={'padding': '8px'}),
                    html.Th("Type", style={'padding': '8px'}),
                    html.Th("OA Status", style={'padding': '8px', 'textAlign': 'center'}),
                    html.Th("Publication Date", style={'padding': '8px', 'textAlign': 'center'})
                ], style={'backgroundColor': color, 'color': 'white'}))
            ]
            rows = []
            for _, paper in entity_papers.sort_values('publication_date', ascending=False).iterrows():
                paper_link = html.A(
                    paper['id'],
                    href=paper['id'],
                    target="_blank",
                    style={'color': color, 'textDecoration': 'underline'}
                )
                rows.append(html.Tr([
                    html.Td(paper_link, style={'padding': '8px'}),
                    html.Td(paper['type'], style={'padding': '8px'}),
                    html.Td(paper['oa_status'], style={'padding': '8px', 'textAlign': 'center'}),
                    html.Td(paper['publication_date'].strftime('%Y-%m-%d'), style={'padding': '8px', 'textAlign': 'center'})
                ]))
            table = html.Table(table_header + [html.Tbody(rows)], style={
                'width': '100%',
                'borderCollapse': 'collapse',
                'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
            })
            return visible_style, f"{entity_type} Papers", header + [table]
        return hidden_style, "", []

    return None