Update venuAnalysis.py
Browse files- venuAnalysis.py +836 -836
venuAnalysis.py
CHANGED
@@ -1,837 +1,837 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import plotly.express as px
|
3 |
-
import plotly.graph_objects as go
|
4 |
-
from dash import Dash, dcc, html, Input, Output, State
|
5 |
-
import numpy as np
|
6 |
-
import random
|
7 |
-
import math
|
8 |
-
from collections import defaultdict
|
9 |
-
import colorsys
|
10 |
-
from fastapi import HTTPException
|
11 |
-
from pydantic import BaseModel
|
12 |
-
import threading
|
13 |
-
import webbrowser
|
14 |
-
import os
|
15 |
-
import psutil
|
16 |
-
import socket
|
17 |
-
from fastapi import HTTPException, APIRouter, Request
|
18 |
-
router = APIRouter()
|
19 |
-
|
20 |
-
# Global variables to track dashboard state
|
21 |
-
dashboard_port = 8050
|
22 |
-
dashboard_process = None
|
23 |
-
|
24 |
-
# MongoDB connection and data loader function
|
25 |
-
async def load_data_from_mongodb(userId, topic, year, request:Request):
|
26 |
-
query = {
|
27 |
-
"userId": userId,
|
28 |
-
"topic": topic,
|
29 |
-
"year": year
|
30 |
-
}
|
31 |
-
collection = request.app.state.collection2
|
32 |
-
document = await collection.find_one(query)
|
33 |
-
if not document:
|
34 |
-
raise ValueError(f"No data found for userId={userId}, topic={topic}, year={year}")
|
35 |
-
# Extract metadata and convert to DataFrame
|
36 |
-
metadata = document.get("metadata", [])
|
37 |
-
df = pd.DataFrame(metadata)
|
38 |
-
df['publication_date'] = pd.to_datetime(df['publication_date'])
|
39 |
-
return df
|
40 |
-
|
41 |
-
# Common functions (unchanged)
|
42 |
-
def filter_by_date_range(dataframe, start_idx, end_idx):
|
43 |
-
start_date = date_range[start_idx]
|
44 |
-
end_date = date_range[end_idx]
|
45 |
-
return dataframe[(dataframe['publication_date'] >= start_date) &
|
46 |
-
(dataframe['publication_date'] <= end_date)]
|
47 |
-
|
48 |
-
def generate_vibrant_colors(n):
|
49 |
-
base_colors = []
|
50 |
-
for i in range(n):
|
51 |
-
hue = (i / n) % 1.0
|
52 |
-
saturation = random.uniform(0.7, 0.9)
|
53 |
-
value = random.uniform(0.7, 0.9)
|
54 |
-
r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
|
55 |
-
vibrant_color = '#{:02x}{:02x}{:02x}'.format(
|
56 |
-
int(r * 255),
|
57 |
-
int(g * 255),
|
58 |
-
int(b * 255)
|
59 |
-
)
|
60 |
-
end_color_r = min(255, int(r * 255 * 1.1))
|
61 |
-
end_color_g = min(255, int(g * 255 * 1.1))
|
62 |
-
end_color_b = min(255, int(b * 255 * 1.1))
|
63 |
-
gradient_end = '#{:02x}{:02x}{:02x}'.format(end_color_r, end_color_g, end_color_b)
|
64 |
-
base_colors.append({
|
65 |
-
'start': vibrant_color,
|
66 |
-
'end': gradient_end
|
67 |
-
})
|
68 |
-
extended_colors = base_colors * math.ceil(n/10)
|
69 |
-
final_colors = []
|
70 |
-
for i in range(n):
|
71 |
-
color = extended_colors[i]
|
72 |
-
jitter = random.uniform(0.9, 1.1)
|
73 |
-
def jitter_color(hex_color):
|
74 |
-
r, g, b = [min(255, max(0, int(int(hex_color[j:j+2], 16) * jitter))) for j in (1, 3, 5)]
|
75 |
-
return f'rgba({r}, {g}, {b}, 0.9)'
|
76 |
-
final_colors.append({
|
77 |
-
'start': jitter_color(color['start']),
|
78 |
-
'end': jitter_color(color['end']).replace('0.9', '0.8')
|
79 |
-
})
|
80 |
-
return final_colors
|
81 |
-
|
82 |
-
# Knowledge map creator function (unchanged)
|
83 |
-
def create_knowledge_map(filtered_df, view_type='host'):
|
84 |
-
color_palette = {
|
85 |
-
'background': '#1E1E1E', # Dark background (almost black)
|
86 |
-
'card_bg': '#1A2238', # Bluish-black for cards (from your image)
|
87 |
-
'accent1': '#FF6A3D', # Orange for headings (keeping from original)
|
88 |
-
'accent2': '#4ECCA3', # Keeping teal for secondary elements
|
89 |
-
'accent3': '#9D84B7', # Keeping lavender for tertiary elements
|
90 |
-
'text_light': '#FFFFFF', # White text
|
91 |
-
'text_dark': '#E0E0E0', # Light grey text for dark backgrounds
|
92 |
-
}
|
93 |
-
|
94 |
-
if view_type == 'host':
|
95 |
-
group_col = 'host_organization_name'
|
96 |
-
id_col = 'host_organization_id'
|
97 |
-
title = "Host Organization Clusters"
|
98 |
-
else:
|
99 |
-
group_col = 'venue'
|
100 |
-
id_col = 'venue_id'
|
101 |
-
title = "Publication Venue Clusters"
|
102 |
-
summary = filtered_df.groupby(group_col).agg(
|
103 |
-
paper_count=('id', 'count'),
|
104 |
-
is_oa=('is_oa', 'mean'),
|
105 |
-
oa_status=('oa_status', lambda x: x.mode()[0] if not x.mode().empty else None),
|
106 |
-
entity_id=(id_col, 'first')
|
107 |
-
).reset_index()
|
108 |
-
paper_count_groups = defaultdict(list)
|
109 |
-
for _, row in summary.iterrows():
|
110 |
-
paper_count_groups[row['paper_count']].append(row)
|
111 |
-
knowledge_map_fig = go.Figure()
|
112 |
-
sorted_counts = sorted(paper_count_groups.keys(), reverse=True)
|
113 |
-
vibrant_colors = generate_vibrant_colors(len(sorted_counts))
|
114 |
-
golden_angle = np.pi * (3 - np.sqrt(5))
|
115 |
-
spiral_coef = 150
|
116 |
-
cluster_metadata = {}
|
117 |
-
max_x, max_y = 500, 500
|
118 |
-
for i, count in enumerate(sorted_counts):
|
119 |
-
radius = np.sqrt(i) * spiral_coef
|
120 |
-
theta = golden_angle * i
|
121 |
-
cluster_x, cluster_y = radius * np.cos(theta), radius * np.sin(theta)
|
122 |
-
label_offset_angle = theta + np.pi/4
|
123 |
-
label_offset_distance = 80 + 4 * np.sqrt(len(paper_count_groups[count]))
|
124 |
-
label_x = cluster_x + label_offset_distance * np.cos(label_offset_angle)
|
125 |
-
label_y = cluster_y + label_offset_distance * np.sin(label_offset_angle)
|
126 |
-
cluster_metadata[count] = {
|
127 |
-
'center_x': cluster_x,
|
128 |
-
'center_y': cluster_y,
|
129 |
-
'entities': paper_count_groups[count],
|
130 |
-
'color': vibrant_colors[i]
|
131 |
-
}
|
132 |
-
entities = paper_count_groups[count]
|
133 |
-
num_entities = len(entities)
|
134 |
-
cluster_size = min(200, max(80, 40 + 8 * np.sqrt(num_entities)))
|
135 |
-
color = vibrant_colors[i]
|
136 |
-
knowledge_map_fig.add_shape(
|
137 |
-
type="circle",
|
138 |
-
x0=cluster_x - cluster_size/2, y0=cluster_y - cluster_size/2,
|
139 |
-
x1=cluster_x + cluster_size/2, y1=cluster_y + cluster_size/2,
|
140 |
-
fillcolor=color['end'].replace("0.8", "0.15"),
|
141 |
-
line=dict(color=color['start'], width=1.5),
|
142 |
-
opacity=0.7
|
143 |
-
)
|
144 |
-
knowledge_map_fig.add_trace(go.Scatter(
|
145 |
-
x=[cluster_x], y=[cluster_y],
|
146 |
-
mode='markers',
|
147 |
-
marker=dict(size=cluster_size, color=color['start'], opacity=0.3),
|
148 |
-
customdata=[[count, "cluster"]],
|
149 |
-
hoverinfo='skip'
|
150 |
-
))
|
151 |
-
knowledge_map_fig.add_trace(go.Scatter(
|
152 |
-
x=[cluster_x, label_x], y=[cluster_y, label_y],
|
153 |
-
mode='lines',
|
154 |
-
line=dict(color=color['start'], width=1, dash='dot'),
|
155 |
-
hoverinfo='skip'
|
156 |
-
))
|
157 |
-
knowledge_map_fig.add_annotation(
|
158 |
-
x=label_x, y=label_y,
|
159 |
-
text=f"{count} papers<br>{num_entities} {'orgs' if view_type == 'host' else 'venues'}",
|
160 |
-
showarrow=False,
|
161 |
-
font=dict(size=11, color='white'),
|
162 |
-
bgcolor=color['start'],
|
163 |
-
bordercolor='white',
|
164 |
-
borderwidth=1,
|
165 |
-
opacity=0.9
|
166 |
-
)
|
167 |
-
entities_sorted = sorted(entities, key=lambda x: x[group_col])
|
168 |
-
inner_spiral_coef = 0.4
|
169 |
-
for j, entity_data in enumerate(entities_sorted):
|
170 |
-
spiral_radius = np.sqrt(j) * cluster_size * inner_spiral_coef / np.sqrt(num_entities + 1)
|
171 |
-
spiral_angle = golden_angle * j
|
172 |
-
jitter_radius = random.uniform(0.9, 1.1) * spiral_radius
|
173 |
-
jitter_angle = spiral_angle + random.uniform(-0.1, 0.1)
|
174 |
-
entity_x = cluster_x + jitter_radius * np.cos(jitter_angle)
|
175 |
-
entity_y = cluster_y + jitter_radius * np.sin(jitter_angle)
|
176 |
-
node_size = min(18, max(8, np.sqrt(entity_data['paper_count']) * 1.5))
|
177 |
-
knowledge_map_fig.add_trace(go.Scatter(
|
178 |
-
x=[entity_x], y=[entity_y],
|
179 |
-
mode='markers',
|
180 |
-
marker=dict(
|
181 |
-
size=node_size,
|
182 |
-
color=color['start'],
|
183 |
-
line=dict(color='rgba(255, 255, 255, 0.9)', width=1.5)
|
184 |
-
),
|
185 |
-
customdata=[[
|
186 |
-
entity_data[group_col],
|
187 |
-
entity_data['paper_count'],
|
188 |
-
entity_data['is_oa'],
|
189 |
-
entity_data['entity_id'],
|
190 |
-
count,
|
191 |
-
"entity"
|
192 |
-
]],
|
193 |
-
hovertemplate=(
|
194 |
-
f"<b>{entity_data[group_col]}</b><br>"
|
195 |
-
f"Papers: {entity_data['paper_count']}<br>"
|
196 |
-
f"Open Access: {entity_data['is_oa']:.1%}<extra></extra>"
|
197 |
-
)
|
198 |
-
))
|
199 |
-
max_x = max([abs(cluster['center_x']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
|
200 |
-
max_y = max([abs(cluster['center_y']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
|
201 |
-
# Update knowledge_map_fig layout
|
202 |
-
knowledge_map_fig.update_layout(
|
203 |
-
title=dict(
|
204 |
-
text=title,
|
205 |
-
font=dict(size=22, family='"Poppins", sans-serif', color=color_palette['accent1']) # Orange title
|
206 |
-
),
|
207 |
-
plot_bgcolor='rgba(26, 34, 56, 1)', # Bluish-black background
|
208 |
-
paper_bgcolor='rgba(26, 34, 56, 0.7)',
|
209 |
-
xaxis=dict(range=[-max(700, max_x), max(700, max_x)], showticklabels=False, showgrid=False),
|
210 |
-
yaxis=dict(range=[-max(500, max_y), max(500, max_y)], showticklabels=False, showgrid=False),
|
211 |
-
margin=dict(l=10, r=10, t=60, b=10),
|
212 |
-
height=700,
|
213 |
-
hovermode='closest',
|
214 |
-
showlegend=False,
|
215 |
-
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']), # Light text
|
216 |
-
)
|
217 |
-
return knowledge_map_fig, cluster_metadata
|
218 |
-
|
219 |
-
# Other chart functions (unchanged)
|
220 |
-
def create_oa_pie_fig(filtered_df):
|
221 |
-
color_palette = {
|
222 |
-
'background': '#1A2238', # Dark blue background
|
223 |
-
'card_bg': '#1A2238', # Changed to match the other chart
|
224 |
-
'accent1': '#FF6A3D', # Vibrant orange for highlights
|
225 |
-
'accent2': '#4ECCA3', # Teal for secondary elements
|
226 |
-
'accent3': '#9D84B7', # Lavender for tertiary elements
|
227 |
-
'text_light': '#FFFFFF', # White text
|
228 |
-
'text_dark': '#FFFFFF', # Changed to white for better contrast
|
229 |
-
}
|
230 |
-
|
231 |
-
fig = px.pie(
|
232 |
-
filtered_df, names='is_oa', title="Overall Open Access Status",
|
233 |
-
labels={True: "Open Access", False: "Not Open Access"},
|
234 |
-
color_discrete_sequence=[color_palette['accent2'], color_palette['accent1']]
|
235 |
-
)
|
236 |
-
|
237 |
-
fig.update_traces(
|
238 |
-
textinfo='label+percent',
|
239 |
-
textfont=dict(size=14, family='"Poppins", sans-serif'),
|
240 |
-
marker=dict(line=dict(color='#1A2238', width=2)) # Match background color
|
241 |
-
)
|
242 |
-
|
243 |
-
fig.update_layout(
|
244 |
-
title=dict(
|
245 |
-
text="Overall Open Access Status",
|
246 |
-
font=dict(size=18, family='"Poppins", sans-serif', color=color_palette['accent1']) # Orange title
|
247 |
-
),
|
248 |
-
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
|
249 |
-
paper_bgcolor=color_palette['background'], # Dark background
|
250 |
-
plot_bgcolor=color_palette['background'], # Dark background
|
251 |
-
margin=dict(t=50, b=20, l=20, r=20),
|
252 |
-
legend=dict(
|
253 |
-
orientation="h",
|
254 |
-
yanchor="bottom",
|
255 |
-
y=-0.2,
|
256 |
-
xanchor="center",
|
257 |
-
x=0.5,
|
258 |
-
font=dict(size=12, color=color_palette['text_light'])
|
259 |
-
)
|
260 |
-
)
|
261 |
-
|
262 |
-
return fig
|
263 |
-
def create_oa_status_pie_fig(filtered_df):
|
264 |
-
custom_colors = [
|
265 |
-
"#9D84B7",
|
266 |
-
'#4DADFF',
|
267 |
-
'#FFD166',
|
268 |
-
'#06D6A0',
|
269 |
-
'#EF476F'
|
270 |
-
]
|
271 |
-
fig = px.pie(
|
272 |
-
filtered_df,
|
273 |
-
names='oa_status',
|
274 |
-
title="Open Access Status Distribution",
|
275 |
-
color_discrete_sequence=custom_colors
|
276 |
-
)
|
277 |
-
fig.update_traces(
|
278 |
-
textinfo='label+percent',
|
279 |
-
insidetextorientation='radial',
|
280 |
-
textfont=dict(size=14, family='"Poppins", sans-serif'),
|
281 |
-
marker=dict(line=dict(color='#FFFFFF', width=2))
|
282 |
-
)
|
283 |
-
fig.update_layout(
|
284 |
-
title=dict(
|
285 |
-
text="Open Access Status Distribution",
|
286 |
-
font=dict(size=18, family='"Poppins", sans-serif', color="#FF6A3D")
|
287 |
-
),
|
288 |
-
font=dict(family='"Poppins", sans-serif', color='#FFFFFF'),
|
289 |
-
paper_bgcolor='#1A2238', # Bluish-black background
|
290 |
-
plot_bgcolor='#1A2238',
|
291 |
-
margin=dict(t=50, b=20, l=20, r=20),
|
292 |
-
legend=dict(
|
293 |
-
orientation="h",
|
294 |
-
yanchor="bottom",
|
295 |
-
y=-0.2,
|
296 |
-
xanchor="center",
|
297 |
-
x=0.5,
|
298 |
-
font=dict(size=12, color='#FFFFFF')
|
299 |
-
)
|
300 |
-
)
|
301 |
-
return fig
|
302 |
-
def create_type_bar_fig(filtered_df):
|
303 |
-
type_counts = filtered_df['type'].value_counts()
|
304 |
-
vibrant_colors = [
|
305 |
-
'#4361EE', '#3A0CA3', '#4CC9F0',
|
306 |
-
'#F72585', '#7209B7', '#B5179E',
|
307 |
-
'#480CA8', '#560BAD', '#F77F00'
|
308 |
-
]
|
309 |
-
fig = px.bar(
|
310 |
-
type_counts,
|
311 |
-
title="Publication Types",
|
312 |
-
labels={'value': 'Count', 'index': 'Type'},
|
313 |
-
color=type_counts.index,
|
314 |
-
color_discrete_sequence=vibrant_colors[:len(type_counts)]
|
315 |
-
)
|
316 |
-
fig.update_layout(
|
317 |
-
title=dict(
|
318 |
-
text="Publication Types",
|
319 |
-
font=dict(size=20, family='"Poppins", sans-serif', color="#FF6A3D") # Larger font size
|
320 |
-
),
|
321 |
-
xaxis_title="Type",
|
322 |
-
yaxis_title="Count",
|
323 |
-
font=dict(family='"Poppins", sans-serif', color="#FFFFFF", size=14), # Increased font size
|
324 |
-
paper_bgcolor='#1A2238', # Consistent dark background
|
325 |
-
plot_bgcolor='#1A2238', # Consistent dark background
|
326 |
-
margin=dict(t=70, b=60, l=60, r=40), # Increased margins
|
327 |
-
xaxis=dict(
|
328 |
-
tickfont=dict(size=14, color="#FFFFFF"), # Increased tick font size
|
329 |
-
tickangle=-45,
|
330 |
-
gridcolor='rgba(255, 255, 255, 0.1)' # Lighter grid lines
|
331 |
-
),
|
332 |
-
yaxis=dict(
|
333 |
-
tickfont=dict(size=14, color="#FFFFFF"), # Increased tick font size
|
334 |
-
gridcolor='rgba(255, 255, 255, 0.1)' # Lighter grid lines
|
335 |
-
),
|
336 |
-
bargap=0.3, # Increased bar gap
|
337 |
-
)
|
338 |
-
fig.update_traces(
|
339 |
-
marker_line_width=1,
|
340 |
-
marker_line_color='rgba(0, 0, 0, 0.5)',
|
341 |
-
opacity=0.9,
|
342 |
-
hovertemplate='%{y} publications<extra></extra>',
|
343 |
-
texttemplate='%{y}', # Add text labels
|
344 |
-
textposition='outside', # Position labels outside bars
|
345 |
-
textfont=dict(size=14, color='white') # Text label formatting
|
346 |
-
)
|
347 |
-
return fig
|
348 |
-
|
349 |
-
# Function to check if port is in use
|
350 |
-
def is_port_in_use(port):
|
351 |
-
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
352 |
-
return s.connect_ex(('localhost', port)) == 0
|
353 |
-
|
354 |
-
# Function to find a free port
|
355 |
-
def find_free_port(start_port=
|
356 |
-
port = start_port
|
357 |
-
while is_port_in_use(port):
|
358 |
-
port += 1
|
359 |
-
return port
|
360 |
-
|
361 |
-
# Function to shutdown any existing dashboard
|
362 |
-
def shutdown_existing_dashboard():
|
363 |
-
global dashboard_process
|
364 |
-
|
365 |
-
# First, check if our port is in use
|
366 |
-
if is_port_in_use(dashboard_port):
|
367 |
-
try:
|
368 |
-
# Kill processes using the port
|
369 |
-
for proc in psutil.process_iter(['pid', 'name', 'connections']):
|
370 |
-
try:
|
371 |
-
for conn in proc.connections():
|
372 |
-
if conn.laddr.port == dashboard_port:
|
373 |
-
print(f"Terminating process {proc.pid} using port {dashboard_port}")
|
374 |
-
proc.terminate()
|
375 |
-
proc.wait(timeout=3)
|
376 |
-
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
|
377 |
-
pass
|
378 |
-
except Exception as e:
|
379 |
-
print(f"Error freeing port {dashboard_port}: {e}")
|
380 |
-
|
381 |
-
# If we're tracking a dashboard process, try to terminate it
|
382 |
-
if dashboard_process is not None:
|
383 |
-
try:
|
384 |
-
# Kill the process if it's still running
|
385 |
-
if dashboard_process.is_alive():
|
386 |
-
parent = psutil.Process(os.getpid())
|
387 |
-
children = parent.children(recursive=True)
|
388 |
-
for process in children:
|
389 |
-
try:
|
390 |
-
process.terminate()
|
391 |
-
except:
|
392 |
-
pass
|
393 |
-
dashboard_process = None
|
394 |
-
except Exception as e:
|
395 |
-
print(f"Error terminating dashboard process: {e}")
|
396 |
-
dashboard_process = None # Reset the reference anyway
|
397 |
-
|
398 |
-
# Pydantic model for request validation
|
399 |
-
class DashboardRequest(BaseModel):
|
400 |
-
userId: str
|
401 |
-
topic: str
|
402 |
-
year: int
|
403 |
-
|
404 |
-
@router.post("/load_and_display_dashboard/")
|
405 |
-
async def load_and_display_dashboard(request: DashboardRequest, req:Request):
|
406 |
-
global dashboard_process, dashboard_port
|
407 |
-
|
408 |
-
# Make sure any existing dashboard is shut down
|
409 |
-
shutdown_existing_dashboard()
|
410 |
-
|
411 |
-
# Find a free port
|
412 |
-
dashboard_port = find_free_port()
|
413 |
-
|
414 |
-
try:
|
415 |
-
# Load data from MongoDB
|
416 |
-
df = await load_data_from_mongodb(request.userId, request.topic, request.year, req)
|
417 |
-
|
418 |
-
# Get date range for the slider
|
419 |
-
global min_date, max_date, date_range, date_marks
|
420 |
-
min_date = df['publication_date'].min()
|
421 |
-
max_date = df['publication_date'].max()
|
422 |
-
date_range = pd.date_range(start=min_date, end=max_date, freq='MS')
|
423 |
-
date_marks = {i: date.strftime('%b %Y') for i, date in enumerate(date_range)}
|
424 |
-
|
425 |
-
# Function to create and run the dashboard
|
426 |
-
def create_and_run_dashboard():
|
427 |
-
# Create a new app instance
|
428 |
-
app = Dash(__name__, suppress_callback_exceptions=True)
|
429 |
-
app.cluster_metadata = {}
|
430 |
-
color_palette = {
|
431 |
-
'background': '#1A2238', # Dark blue background
|
432 |
-
'card_bg': '#F8F8FF', # Off-white for cards
|
433 |
-
'accent1': '#FF6A3D', # Vibrant orange for highlights
|
434 |
-
'accent2': '#4ECCA3', # Teal for secondary elements
|
435 |
-
'accent3': '#9D84B7', # Lavender for tertiary elements
|
436 |
-
'text_light': '#FFFFFF', # White text
|
437 |
-
'text_dark': '#2D3748', # Dark gray text
|
438 |
-
}
|
439 |
-
|
440 |
-
# Define modern styling for containers
|
441 |
-
container_style = {
|
442 |
-
'padding': '5px',
|
443 |
-
'backgroundColor': color_palette['text_dark'],
|
444 |
-
'borderRadius': '12px',
|
445 |
-
'boxShadow': '0 4px 12px rgba(0, 0, 0, 0.15)',
|
446 |
-
'marginBottom': '25px',
|
447 |
-
'border': f'1px solid rgba(255, 255, 255, 0.2)',
|
448 |
-
|
449 |
-
}
|
450 |
-
|
451 |
-
hidden_style = {**container_style, 'display': 'none'}
|
452 |
-
visible_style = {**container_style}
|
453 |
-
|
454 |
-
# Create a modern, attractive layout
|
455 |
-
app.layout = html.Div([
|
456 |
-
# Header section with gradient background
|
457 |
-
html.Div([
|
458 |
-
html.H1(request.topic.capitalize() + " Analytics Dashboard", style={
|
459 |
-
'textAlign': 'center',
|
460 |
-
'marginBottom': '10px',
|
461 |
-
'color': color_palette['accent1'],
|
462 |
-
'fontSize': '2.5rem',
|
463 |
-
'fontWeight': '700',
|
464 |
-
'letterSpacing': '0.5px',
|
465 |
-
}),
|
466 |
-
html.Div([
|
467 |
-
html.P("Research Publication Analysis & Knowledge Mapping", style={
|
468 |
-
'textAlign': 'center',
|
469 |
-
'color': color_palette['text_light'],
|
470 |
-
'opacity': '0.8',
|
471 |
-
'fontSize': '1.2rem',
|
472 |
-
'marginTop': '0',
|
473 |
-
})
|
474 |
-
])
|
475 |
-
], style={
|
476 |
-
'background': f'linear-gradient(135deg, {color_palette["background"]}, #364156)',
|
477 |
-
'padding': '30px 20px',
|
478 |
-
'borderRadius': '12px',
|
479 |
-
'marginBottom': '25px',
|
480 |
-
'boxShadow': '0 4px 20px rgba(0, 0, 0, 0.2)',
|
481 |
-
}),
|
482 |
-
|
483 |
-
# Controls section
|
484 |
-
html.Div([
|
485 |
-
html.Div([
|
486 |
-
html.Button(
|
487 |
-
id='view-toggle',
|
488 |
-
children='Switch to Venue View',
|
489 |
-
style={
|
490 |
-
'padding': '12px 20px',
|
491 |
-
'fontSize': '1rem',
|
492 |
-
'borderRadius': '8px',
|
493 |
-
'border': 'none',
|
494 |
-
'backgroundColor': color_palette['accent1'],
|
495 |
-
'color': 'white',
|
496 |
-
'cursor': 'pointer',
|
497 |
-
'boxShadow': '0 2px 5px rgba(0, 0, 0, 0.1)',
|
498 |
-
'transition': 'all 0.3s ease',
|
499 |
-
'marginRight': '20px',
|
500 |
-
'fontWeight': '500',
|
501 |
-
}
|
502 |
-
),
|
503 |
-
html.H3("Filter by Publication Date", style={
|
504 |
-
'marginBottom': '15px',
|
505 |
-
'color': color_palette['text_dark'],
|
506 |
-
'fontSize': '1.3rem',
|
507 |
-
'fontWeight': '600',
|
508 |
-
}),
|
509 |
-
], style={'display': 'flex', 'alignItems': 'center', 'marginBottom': '15px'}),
|
510 |
-
|
511 |
-
dcc.RangeSlider(
|
512 |
-
id='date-slider',
|
513 |
-
min=0,
|
514 |
-
max=len(date_range) - 1,
|
515 |
-
value=[0, len(date_range) - 1],
|
516 |
-
marks=date_marks if len(date_marks) <= 12 else {
|
517 |
-
i: date_marks[i] for i in range(0, len(date_range), max(1, len(date_range) // 12))
|
518 |
-
},
|
519 |
-
step=1,
|
520 |
-
tooltip={"placement": "bottom", "always_visible": True},
|
521 |
-
updatemode='mouseup'
|
522 |
-
),
|
523 |
-
html.Div(id='date-range-display', style={
|
524 |
-
'textAlign': 'center',
|
525 |
-
'marginTop': '12px',
|
526 |
-
'fontSize': '1.1rem',
|
527 |
-
'fontWeight': '500',
|
528 |
-
'color': color_palette['accent1'],
|
529 |
-
})
|
530 |
-
], style={**container_style, 'marginBottom': '25px'}),
|
531 |
-
|
532 |
-
# Knowledge map - main visualization
|
533 |
-
html.Div([
|
534 |
-
dcc.Graph(
|
535 |
-
id='knowledge-map',
|
536 |
-
style={'width': '100%', 'height': '700px'},
|
537 |
-
config={'scrollZoom': True, 'displayModeBar': True, 'responsive': True}
|
538 |
-
)
|
539 |
-
], style={
|
540 |
-
**container_style,
|
541 |
-
'height': '750px',
|
542 |
-
'marginBottom': '25px',
|
543 |
-
'background': f'linear-gradient(to bottom right, {color_palette["card_bg"]}, #F0F0F8)',
|
544 |
-
}),
|
545 |
-
|
546 |
-
# Details container - appears when clicking elements
|
547 |
-
html.Div([
|
548 |
-
html.H3(id='details-title', style={
|
549 |
-
'marginBottom': '15px',
|
550 |
-
'color': color_palette['accent1'],
|
551 |
-
'fontSize': '1.4rem',
|
552 |
-
'fontWeight': '600',
|
553 |
-
}),
|
554 |
-
html.Div(id='details-content', style={
|
555 |
-
'maxHeight': '350px',
|
556 |
-
'overflowY': 'auto',
|
557 |
-
'padding': '10px',
|
558 |
-
'borderRadius': '8px',
|
559 |
-
'backgroundColor': 'rgba(255, 255, 255, 0.7)',
|
560 |
-
})
|
561 |
-
], id='details-container', style=hidden_style),
|
562 |
-
|
563 |
-
# Charts in flex container
|
564 |
-
html.Div([
|
565 |
-
html.Div([
|
566 |
-
dcc.Graph(
|
567 |
-
id='oa-pie-chart',
|
568 |
-
style={'width': '100%', 'height': '350px'},
|
569 |
-
config={'displayModeBar': False, 'responsive': True}
|
570 |
-
)
|
571 |
-
], style={
|
572 |
-
'flex': 1,
|
573 |
-
**container_style,
|
574 |
-
'margin': '0 10px',
|
575 |
-
'height': '400px',
|
576 |
-
'transition': 'transform 0.3s ease',
|
577 |
-
':hover': {'transform': 'translateY(-5px)'},
|
578 |
-
}),
|
579 |
-
html.Div([
|
580 |
-
dcc.Graph(
|
581 |
-
id='oa-status-pie-chart',
|
582 |
-
style={'width': '100%', 'height': '350px'},
|
583 |
-
config={'displayModeBar': False, 'responsive': True}
|
584 |
-
)
|
585 |
-
], style={
|
586 |
-
'flex': 1,
|
587 |
-
**container_style,
|
588 |
-
'margin': '0 10px',
|
589 |
-
'height': '400px',
|
590 |
-
'transition': 'transform 0.3s ease',
|
591 |
-
':hover': {'transform': 'translateY(-5px)'},
|
592 |
-
})
|
593 |
-
], style={'display': 'flex', 'marginBottom': '25px', 'height': '420px'}),
|
594 |
-
|
595 |
-
# Bar chart container
|
596 |
-
# Increase bar chart height and improve visibility
|
597 |
-
html.Div([
|
598 |
-
dcc.Graph(
|
599 |
-
id='type-bar-chart',
|
600 |
-
style={'width': '100%', 'height': '50vh'}, # Reduced from 60vh
|
601 |
-
config={'displayModeBar': False, 'responsive': True}
|
602 |
-
)
|
603 |
-
], style={
|
604 |
-
**container_style,
|
605 |
-
'height': '500px', # Decreased from 650px
|
606 |
-
'background': 'rgba(26, 34, 56, 1)',
|
607 |
-
'marginBottom': '10px', # Added smaller bottom margin
|
608 |
-
}),
|
609 |
-
# Store components for state
|
610 |
-
dcc.Store(id='filtered-df-info'),
|
611 |
-
dcc.Store(id='current-view', data='host'),
|
612 |
-
html.Div(id='load-trigger', children='trigger-initial-load', style={'display': 'none'})
|
613 |
-
], style={
|
614 |
-
'fontFamily': '"Poppins", "Segoe UI", Arial, sans-serif',
|
615 |
-
'backgroundColor': '#121212', # Dark background
|
616 |
-
'backgroundImage': 'none', # Remove gradient
|
617 |
-
'padding': '30px',
|
618 |
-
'maxWidth': '1800px',
|
619 |
-
'margin': '0 auto',
|
620 |
-
'minHeight': '100vh',
|
621 |
-
'color': color_palette['text_light'],
|
622 |
-
'paddingBottom': '10px',
|
623 |
-
})
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
@app.callback(
|
628 |
-
[Output('current-view', 'data'),
|
629 |
-
Output('view-toggle', 'children')],
|
630 |
-
[Input('view-toggle', 'n_clicks')],
|
631 |
-
[State('current-view', 'data')]
|
632 |
-
)
|
633 |
-
def toggle_view(n_clicks, current_view):
|
634 |
-
if not n_clicks:
|
635 |
-
return current_view, 'Switch to Venue View' if current_view == 'host' else 'Switch to Host View'
|
636 |
-
new_view = 'venue' if current_view == 'host' else 'host'
|
637 |
-
new_button_text = 'Switch to Host View' if new_view == 'venue' else 'Switch to Venue View'
|
638 |
-
return new_view, new_button_text
|
639 |
-
|
640 |
-
@app.callback(
|
641 |
-
Output('date-range-display', 'children'),
|
642 |
-
[Input('date-slider', 'value')]
|
643 |
-
)
|
644 |
-
def update_date_range_display(date_range_indices):
|
645 |
-
start_date = date_range[date_range_indices[0]]
|
646 |
-
end_date = date_range[date_range_indices[1]]
|
647 |
-
return f"Selected period: {start_date.strftime('%b %Y')} to {end_date.strftime('%b %Y')}"
|
648 |
-
|
649 |
-
@app.callback(
|
650 |
-
[Output('knowledge-map', 'figure'),
|
651 |
-
Output('oa-pie-chart', 'figure'),
|
652 |
-
Output('oa-status-pie-chart', 'figure'),
|
653 |
-
Output('type-bar-chart', 'figure'),
|
654 |
-
Output('filtered-df-info', 'data'),
|
655 |
-
Output('details-container', 'style')],
|
656 |
-
[Input('date-slider', 'value'),
|
657 |
-
Input('current-view', 'data'),
|
658 |
-
Input('load-trigger', 'children')] # Added trigger
|
659 |
-
)
|
660 |
-
def update_visualizations(date_range_indices, current_view, _):
|
661 |
-
filtered_df = filter_by_date_range(df, date_range_indices[0], date_range_indices[1])
|
662 |
-
knowledge_map_fig, cluster_metadata = create_knowledge_map(filtered_df, current_view)
|
663 |
-
app.cluster_metadata = cluster_metadata
|
664 |
-
filtered_info = {
|
665 |
-
'start_idx': date_range_indices[0],
|
666 |
-
'end_idx': date_range_indices[1],
|
667 |
-
'start_date': date_range[date_range_indices[0]].strftime('%Y-%m-%d'),
|
668 |
-
'end_date': date_range[date_range_indices[1]].strftime('%Y-%m-%d'),
|
669 |
-
'record_count': len(filtered_df),
|
670 |
-
'view_type': current_view
|
671 |
-
}
|
672 |
-
return (
|
673 |
-
knowledge_map_fig,
|
674 |
-
create_oa_pie_fig(filtered_df),
|
675 |
-
create_oa_status_pie_fig(filtered_df),
|
676 |
-
create_type_bar_fig(filtered_df),
|
677 |
-
filtered_info,
|
678 |
-
hidden_style
|
679 |
-
)
|
680 |
-
|
681 |
-
@app.callback(
|
682 |
-
[Output('details-container', 'style', allow_duplicate=True),
|
683 |
-
Output('details-title', 'children'),
|
684 |
-
Output('details-content', 'children')],
|
685 |
-
[Input('knowledge-map', 'clickData')],
|
686 |
-
[State('filtered-df-info', 'data')],
|
687 |
-
prevent_initial_call=True
|
688 |
-
)
|
689 |
-
def display_details(clickData, filtered_info):
|
690 |
-
if not clickData or not filtered_info:
|
691 |
-
return hidden_style, "", []
|
692 |
-
customdata = clickData['points'][0]['customdata']
|
693 |
-
view_type = filtered_info['view_type']
|
694 |
-
entity_type = "Organization" if view_type == 'host' else "Venue"
|
695 |
-
if len(customdata) >= 2 and customdata[-1] == "cluster":
|
696 |
-
count = customdata[0]
|
697 |
-
if count not in app.cluster_metadata:
|
698 |
-
return hidden_style, "", []
|
699 |
-
entities = app.cluster_metadata[count]['entities']
|
700 |
-
color = app.cluster_metadata[count]['color']['start']
|
701 |
-
table_header = [
|
702 |
-
html.Thead(html.Tr([
|
703 |
-
html.Th(f"{entity_type} Name", style={'padding': '8px'}),
|
704 |
-
html.Th(f"{entity_type} ID", style={'padding': '8px'}),
|
705 |
-
html.Th("Papers", style={'padding': '8px', 'textAlign': 'center'}),
|
706 |
-
html.Th("Open Access %", style={'padding': '8px', 'textAlign': 'center'})
|
707 |
-
], style={'backgroundColor': color_palette['accent1'], 'color': 'white'}))
|
708 |
-
]
|
709 |
-
|
710 |
-
# Update row styles
|
711 |
-
row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
|
712 |
-
rows = []
|
713 |
-
for i, entity in enumerate(sorted(entities, key=lambda x: x['paper_count'], reverse=True)):
|
714 |
-
row_style = {'backgroundColor': '#f9f9f9'} if i % 2 == 0 else {'backgroundColor': 'white'}
|
715 |
-
entity_name_link = html.A(
|
716 |
-
entity[f"{view_type}_organization_name" if view_type == 'host' else "venue"],
|
717 |
-
href=entity['entity_id'],
|
718 |
-
target="_blank",
|
719 |
-
style={'color': color, 'textDecoration': 'underline'}
|
720 |
-
)
|
721 |
-
entity_id_link = html.A(
|
722 |
-
entity['entity_id'].split('/')[-1],
|
723 |
-
href=entity['entity_id'],
|
724 |
-
target="_blank",
|
725 |
-
style={'color': color, 'textDecoration': 'underline'}
|
726 |
-
)
|
727 |
-
rows.append(html.Tr([
|
728 |
-
html.Td(entity_name_link, style={'padding': '8px'}),
|
729 |
-
html.Td(entity_id_link, style={'padding': '8px'}),
|
730 |
-
html.Td(entity['paper_count'], style={'padding': '8px', 'textAlign': 'center'}),
|
731 |
-
html.Td(f"{entity['is_oa']:.1%}", style={'padding': '8px', 'textAlign': 'center'})
|
732 |
-
], style=row_style))
|
733 |
-
table = html.Table(table_header + [html.Tbody(rows)], style={
|
734 |
-
'width': '100%',
|
735 |
-
'borderCollapse': 'collapse',
|
736 |
-
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
|
737 |
-
})
|
738 |
-
return (
|
739 |
-
visible_style,
|
740 |
-
f"{entity_type}s with {count} papers",
|
741 |
-
[html.P(f"Showing {len(entities)} {entity_type.lower()}s during selected period"), table]
|
742 |
-
)
|
743 |
-
elif len(customdata) >= 6 and customdata[-1] == "entity":
|
744 |
-
entity_name = customdata[0]
|
745 |
-
entity_id = customdata[3]
|
746 |
-
cluster_count = customdata[4]
|
747 |
-
color = app.cluster_metadata[cluster_count]['color']['start']
|
748 |
-
if view_type == 'host':
|
749 |
-
entity_papers = df[df['host_organization_name'] == entity_name].copy()
|
750 |
-
else:
|
751 |
-
entity_papers = df[df['venue'] == entity_name].copy()
|
752 |
-
entity_papers = entity_papers[
|
753 |
-
(entity_papers['publication_date'] >= pd.to_datetime(filtered_info['start_date'])) &
|
754 |
-
(entity_papers['publication_date'] <= pd.to_datetime(filtered_info['end_date']))
|
755 |
-
]
|
756 |
-
entity_name_link = html.A(
|
757 |
-
entity_name,
|
758 |
-
href=entity_id,
|
759 |
-
target="_blank",
|
760 |
-
style={'color': color, 'textDecoration': 'underline', 'fontSize': '1.2em'}
|
761 |
-
)
|
762 |
-
entity_id_link = html.A(
|
763 |
-
entity_id.split('/')[-1],
|
764 |
-
href=entity_id,
|
765 |
-
target="_blank",
|
766 |
-
style={'color': color, 'textDecoration': 'underline'}
|
767 |
-
)
|
768 |
-
header = [
|
769 |
-
html.Div([
|
770 |
-
html.Span("Name: ", style={'fontWeight': 'bold'}),
|
771 |
-
entity_name_link
|
772 |
-
], style={'marginBottom': '10px'}),
|
773 |
-
html.Div([
|
774 |
-
html.Span("ID: ", style={'fontWeight': 'bold'}),
|
775 |
-
entity_id_link
|
776 |
-
], style={'marginBottom': '10px'}),
|
777 |
-
html.Div([
|
778 |
-
html.Span(f"Papers: {len(entity_papers)}", style={'marginRight': '20px'}),
|
779 |
-
], style={'marginBottom': '20px'})
|
780 |
-
]
|
781 |
-
table_header = [
|
782 |
-
html.Thead(html.Tr([
|
783 |
-
html.Th("Paper ID", style={'padding': '8px'}),
|
784 |
-
html.Th("Type", style={'padding': '8px'}),
|
785 |
-
html.Th("OA Status", style={'padding': '8px', 'textAlign': 'center'}),
|
786 |
-
html.Th("Publication Date", style={'padding': '8px', 'textAlign': 'center'})
|
787 |
-
], style={'backgroundColor': color, 'color': 'white'}))
|
788 |
-
]
|
789 |
-
rows = []
|
790 |
-
for i, (_, paper) in enumerate(entity_papers.sort_values('publication_date', ascending=False).iterrows()):
|
791 |
-
row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
|
792 |
-
paper_link = html.A(
|
793 |
-
paper['id'],
|
794 |
-
href=paper['id'],
|
795 |
-
target="_blank",
|
796 |
-
style={'color': color, 'textDecoration': 'underline'}
|
797 |
-
)
|
798 |
-
rows.append(html.Tr([
|
799 |
-
html.Td(paper_link, style={'padding': '8px'}),
|
800 |
-
html.Td(paper['type'], style={'padding': '8px'}),
|
801 |
-
html.Td(paper['oa_status'], style={'padding': '8px', 'textAlign': 'center'}),
|
802 |
-
html.Td(paper['publication_date'].strftime('%Y-%m-%d'), style={'padding': '8px', 'textAlign': 'center'})
|
803 |
-
], style=row_style))
|
804 |
-
table = html.Table(table_header + [html.Tbody(rows)], style={
|
805 |
-
'width': '100%',
|
806 |
-
'borderCollapse': 'collapse',
|
807 |
-
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
|
808 |
-
})
|
809 |
-
with open("dashboard.html", "w") as f:
|
810 |
-
f.write(app.index())
|
811 |
-
print("yup saved!!")
|
812 |
-
return visible_style, f"{entity_type} Papers", header + [table]
|
813 |
-
return hidden_style, "", []
|
814 |
-
|
815 |
-
# Start the Dash app
|
816 |
-
app.run_server(debug=False, port=dashboard_port, use_reloader=False)
|
817 |
-
|
818 |
-
# Run the dashboard in a separate process
|
819 |
-
dashboard_process = threading.Thread(target=create_and_run_dashboard)
|
820 |
-
dashboard_process.daemon = True
|
821 |
-
dashboard_process.start()
|
822 |
-
|
823 |
-
# Open the browser after a delay
|
824 |
-
def open_browser():
|
825 |
-
try:
|
826 |
-
webbrowser.open_new(f"http://127.0.0.1:{dashboard_port}/")
|
827 |
-
except:
|
828 |
-
pass
|
829 |
-
|
830 |
-
threading.Timer(1.5, open_browser).start()
|
831 |
-
|
832 |
-
return {"status": "success", "message": f"Dashboard loaded successfully on port {dashboard_port}."}
|
833 |
-
|
834 |
-
except Exception as e:
|
835 |
-
# Clean up in case of failure
|
836 |
-
shutdown_existing_dashboard()
|
837 |
raise HTTPException(status_code=400, detail=str(e))
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from dash import Dash, dcc, html, Input, Output, State
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import math
|
8 |
+
from collections import defaultdict
|
9 |
+
import colorsys
|
10 |
+
from fastapi import HTTPException
|
11 |
+
from pydantic import BaseModel
|
12 |
+
import threading
|
13 |
+
import webbrowser
|
14 |
+
import os
|
15 |
+
import psutil
|
16 |
+
import socket
|
17 |
+
from fastapi import HTTPException, APIRouter, Request
|
18 |
+
router = APIRouter()
|
19 |
+
|
20 |
+
# Global variables to track dashboard state
|
21 |
+
dashboard_port = 8050
|
22 |
+
dashboard_process = None
|
23 |
+
|
24 |
+
# MongoDB connection and data loader function
|
25 |
+
async def load_data_from_mongodb(userId, topic, year, request:Request):
|
26 |
+
query = {
|
27 |
+
"userId": userId,
|
28 |
+
"topic": topic,
|
29 |
+
"year": year
|
30 |
+
}
|
31 |
+
collection = request.app.state.collection2
|
32 |
+
document = await collection.find_one(query)
|
33 |
+
if not document:
|
34 |
+
raise ValueError(f"No data found for userId={userId}, topic={topic}, year={year}")
|
35 |
+
# Extract metadata and convert to DataFrame
|
36 |
+
metadata = document.get("metadata", [])
|
37 |
+
df = pd.DataFrame(metadata)
|
38 |
+
df['publication_date'] = pd.to_datetime(df['publication_date'])
|
39 |
+
return df
|
40 |
+
|
41 |
+
# Common functions (unchanged)
|
42 |
+
def filter_by_date_range(dataframe, start_idx, end_idx):
|
43 |
+
start_date = date_range[start_idx]
|
44 |
+
end_date = date_range[end_idx]
|
45 |
+
return dataframe[(dataframe['publication_date'] >= start_date) &
|
46 |
+
(dataframe['publication_date'] <= end_date)]
|
47 |
+
|
48 |
+
def generate_vibrant_colors(n):
|
49 |
+
base_colors = []
|
50 |
+
for i in range(n):
|
51 |
+
hue = (i / n) % 1.0
|
52 |
+
saturation = random.uniform(0.7, 0.9)
|
53 |
+
value = random.uniform(0.7, 0.9)
|
54 |
+
r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
|
55 |
+
vibrant_color = '#{:02x}{:02x}{:02x}'.format(
|
56 |
+
int(r * 255),
|
57 |
+
int(g * 255),
|
58 |
+
int(b * 255)
|
59 |
+
)
|
60 |
+
end_color_r = min(255, int(r * 255 * 1.1))
|
61 |
+
end_color_g = min(255, int(g * 255 * 1.1))
|
62 |
+
end_color_b = min(255, int(b * 255 * 1.1))
|
63 |
+
gradient_end = '#{:02x}{:02x}{:02x}'.format(end_color_r, end_color_g, end_color_b)
|
64 |
+
base_colors.append({
|
65 |
+
'start': vibrant_color,
|
66 |
+
'end': gradient_end
|
67 |
+
})
|
68 |
+
extended_colors = base_colors * math.ceil(n/10)
|
69 |
+
final_colors = []
|
70 |
+
for i in range(n):
|
71 |
+
color = extended_colors[i]
|
72 |
+
jitter = random.uniform(0.9, 1.1)
|
73 |
+
def jitter_color(hex_color):
|
74 |
+
r, g, b = [min(255, max(0, int(int(hex_color[j:j+2], 16) * jitter))) for j in (1, 3, 5)]
|
75 |
+
return f'rgba({r}, {g}, {b}, 0.9)'
|
76 |
+
final_colors.append({
|
77 |
+
'start': jitter_color(color['start']),
|
78 |
+
'end': jitter_color(color['end']).replace('0.9', '0.8')
|
79 |
+
})
|
80 |
+
return final_colors
|
81 |
+
|
82 |
+
# Knowledge map creator function (unchanged)
|
83 |
+
def create_knowledge_map(filtered_df, view_type='host'):
|
84 |
+
color_palette = {
|
85 |
+
'background': '#1E1E1E', # Dark background (almost black)
|
86 |
+
'card_bg': '#1A2238', # Bluish-black for cards (from your image)
|
87 |
+
'accent1': '#FF6A3D', # Orange for headings (keeping from original)
|
88 |
+
'accent2': '#4ECCA3', # Keeping teal for secondary elements
|
89 |
+
'accent3': '#9D84B7', # Keeping lavender for tertiary elements
|
90 |
+
'text_light': '#FFFFFF', # White text
|
91 |
+
'text_dark': '#E0E0E0', # Light grey text for dark backgrounds
|
92 |
+
}
|
93 |
+
|
94 |
+
if view_type == 'host':
|
95 |
+
group_col = 'host_organization_name'
|
96 |
+
id_col = 'host_organization_id'
|
97 |
+
title = "Host Organization Clusters"
|
98 |
+
else:
|
99 |
+
group_col = 'venue'
|
100 |
+
id_col = 'venue_id'
|
101 |
+
title = "Publication Venue Clusters"
|
102 |
+
summary = filtered_df.groupby(group_col).agg(
|
103 |
+
paper_count=('id', 'count'),
|
104 |
+
is_oa=('is_oa', 'mean'),
|
105 |
+
oa_status=('oa_status', lambda x: x.mode()[0] if not x.mode().empty else None),
|
106 |
+
entity_id=(id_col, 'first')
|
107 |
+
).reset_index()
|
108 |
+
paper_count_groups = defaultdict(list)
|
109 |
+
for _, row in summary.iterrows():
|
110 |
+
paper_count_groups[row['paper_count']].append(row)
|
111 |
+
knowledge_map_fig = go.Figure()
|
112 |
+
sorted_counts = sorted(paper_count_groups.keys(), reverse=True)
|
113 |
+
vibrant_colors = generate_vibrant_colors(len(sorted_counts))
|
114 |
+
golden_angle = np.pi * (3 - np.sqrt(5))
|
115 |
+
spiral_coef = 150
|
116 |
+
cluster_metadata = {}
|
117 |
+
max_x, max_y = 500, 500
|
118 |
+
for i, count in enumerate(sorted_counts):
|
119 |
+
radius = np.sqrt(i) * spiral_coef
|
120 |
+
theta = golden_angle * i
|
121 |
+
cluster_x, cluster_y = radius * np.cos(theta), radius * np.sin(theta)
|
122 |
+
label_offset_angle = theta + np.pi/4
|
123 |
+
label_offset_distance = 80 + 4 * np.sqrt(len(paper_count_groups[count]))
|
124 |
+
label_x = cluster_x + label_offset_distance * np.cos(label_offset_angle)
|
125 |
+
label_y = cluster_y + label_offset_distance * np.sin(label_offset_angle)
|
126 |
+
cluster_metadata[count] = {
|
127 |
+
'center_x': cluster_x,
|
128 |
+
'center_y': cluster_y,
|
129 |
+
'entities': paper_count_groups[count],
|
130 |
+
'color': vibrant_colors[i]
|
131 |
+
}
|
132 |
+
entities = paper_count_groups[count]
|
133 |
+
num_entities = len(entities)
|
134 |
+
cluster_size = min(200, max(80, 40 + 8 * np.sqrt(num_entities)))
|
135 |
+
color = vibrant_colors[i]
|
136 |
+
knowledge_map_fig.add_shape(
|
137 |
+
type="circle",
|
138 |
+
x0=cluster_x - cluster_size/2, y0=cluster_y - cluster_size/2,
|
139 |
+
x1=cluster_x + cluster_size/2, y1=cluster_y + cluster_size/2,
|
140 |
+
fillcolor=color['end'].replace("0.8", "0.15"),
|
141 |
+
line=dict(color=color['start'], width=1.5),
|
142 |
+
opacity=0.7
|
143 |
+
)
|
144 |
+
knowledge_map_fig.add_trace(go.Scatter(
|
145 |
+
x=[cluster_x], y=[cluster_y],
|
146 |
+
mode='markers',
|
147 |
+
marker=dict(size=cluster_size, color=color['start'], opacity=0.3),
|
148 |
+
customdata=[[count, "cluster"]],
|
149 |
+
hoverinfo='skip'
|
150 |
+
))
|
151 |
+
knowledge_map_fig.add_trace(go.Scatter(
|
152 |
+
x=[cluster_x, label_x], y=[cluster_y, label_y],
|
153 |
+
mode='lines',
|
154 |
+
line=dict(color=color['start'], width=1, dash='dot'),
|
155 |
+
hoverinfo='skip'
|
156 |
+
))
|
157 |
+
knowledge_map_fig.add_annotation(
|
158 |
+
x=label_x, y=label_y,
|
159 |
+
text=f"{count} papers<br>{num_entities} {'orgs' if view_type == 'host' else 'venues'}",
|
160 |
+
showarrow=False,
|
161 |
+
font=dict(size=11, color='white'),
|
162 |
+
bgcolor=color['start'],
|
163 |
+
bordercolor='white',
|
164 |
+
borderwidth=1,
|
165 |
+
opacity=0.9
|
166 |
+
)
|
167 |
+
entities_sorted = sorted(entities, key=lambda x: x[group_col])
|
168 |
+
inner_spiral_coef = 0.4
|
169 |
+
for j, entity_data in enumerate(entities_sorted):
|
170 |
+
spiral_radius = np.sqrt(j) * cluster_size * inner_spiral_coef / np.sqrt(num_entities + 1)
|
171 |
+
spiral_angle = golden_angle * j
|
172 |
+
jitter_radius = random.uniform(0.9, 1.1) * spiral_radius
|
173 |
+
jitter_angle = spiral_angle + random.uniform(-0.1, 0.1)
|
174 |
+
entity_x = cluster_x + jitter_radius * np.cos(jitter_angle)
|
175 |
+
entity_y = cluster_y + jitter_radius * np.sin(jitter_angle)
|
176 |
+
node_size = min(18, max(8, np.sqrt(entity_data['paper_count']) * 1.5))
|
177 |
+
knowledge_map_fig.add_trace(go.Scatter(
|
178 |
+
x=[entity_x], y=[entity_y],
|
179 |
+
mode='markers',
|
180 |
+
marker=dict(
|
181 |
+
size=node_size,
|
182 |
+
color=color['start'],
|
183 |
+
line=dict(color='rgba(255, 255, 255, 0.9)', width=1.5)
|
184 |
+
),
|
185 |
+
customdata=[[
|
186 |
+
entity_data[group_col],
|
187 |
+
entity_data['paper_count'],
|
188 |
+
entity_data['is_oa'],
|
189 |
+
entity_data['entity_id'],
|
190 |
+
count,
|
191 |
+
"entity"
|
192 |
+
]],
|
193 |
+
hovertemplate=(
|
194 |
+
f"<b>{entity_data[group_col]}</b><br>"
|
195 |
+
f"Papers: {entity_data['paper_count']}<br>"
|
196 |
+
f"Open Access: {entity_data['is_oa']:.1%}<extra></extra>"
|
197 |
+
)
|
198 |
+
))
|
199 |
+
max_x = max([abs(cluster['center_x']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
|
200 |
+
max_y = max([abs(cluster['center_y']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
|
201 |
+
# Update knowledge_map_fig layout
|
202 |
+
knowledge_map_fig.update_layout(
|
203 |
+
title=dict(
|
204 |
+
text=title,
|
205 |
+
font=dict(size=22, family='"Poppins", sans-serif', color=color_palette['accent1']) # Orange title
|
206 |
+
),
|
207 |
+
plot_bgcolor='rgba(26, 34, 56, 1)', # Bluish-black background
|
208 |
+
paper_bgcolor='rgba(26, 34, 56, 0.7)',
|
209 |
+
xaxis=dict(range=[-max(700, max_x), max(700, max_x)], showticklabels=False, showgrid=False),
|
210 |
+
yaxis=dict(range=[-max(500, max_y), max(500, max_y)], showticklabels=False, showgrid=False),
|
211 |
+
margin=dict(l=10, r=10, t=60, b=10),
|
212 |
+
height=700,
|
213 |
+
hovermode='closest',
|
214 |
+
showlegend=False,
|
215 |
+
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']), # Light text
|
216 |
+
)
|
217 |
+
return knowledge_map_fig, cluster_metadata
|
218 |
+
|
219 |
+
# Other chart functions (unchanged)
|
220 |
+
def create_oa_pie_fig(filtered_df):
|
221 |
+
color_palette = {
|
222 |
+
'background': '#1A2238', # Dark blue background
|
223 |
+
'card_bg': '#1A2238', # Changed to match the other chart
|
224 |
+
'accent1': '#FF6A3D', # Vibrant orange for highlights
|
225 |
+
'accent2': '#4ECCA3', # Teal for secondary elements
|
226 |
+
'accent3': '#9D84B7', # Lavender for tertiary elements
|
227 |
+
'text_light': '#FFFFFF', # White text
|
228 |
+
'text_dark': '#FFFFFF', # Changed to white for better contrast
|
229 |
+
}
|
230 |
+
|
231 |
+
fig = px.pie(
|
232 |
+
filtered_df, names='is_oa', title="Overall Open Access Status",
|
233 |
+
labels={True: "Open Access", False: "Not Open Access"},
|
234 |
+
color_discrete_sequence=[color_palette['accent2'], color_palette['accent1']]
|
235 |
+
)
|
236 |
+
|
237 |
+
fig.update_traces(
|
238 |
+
textinfo='label+percent',
|
239 |
+
textfont=dict(size=14, family='"Poppins", sans-serif'),
|
240 |
+
marker=dict(line=dict(color='#1A2238', width=2)) # Match background color
|
241 |
+
)
|
242 |
+
|
243 |
+
fig.update_layout(
|
244 |
+
title=dict(
|
245 |
+
text="Overall Open Access Status",
|
246 |
+
font=dict(size=18, family='"Poppins", sans-serif', color=color_palette['accent1']) # Orange title
|
247 |
+
),
|
248 |
+
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
|
249 |
+
paper_bgcolor=color_palette['background'], # Dark background
|
250 |
+
plot_bgcolor=color_palette['background'], # Dark background
|
251 |
+
margin=dict(t=50, b=20, l=20, r=20),
|
252 |
+
legend=dict(
|
253 |
+
orientation="h",
|
254 |
+
yanchor="bottom",
|
255 |
+
y=-0.2,
|
256 |
+
xanchor="center",
|
257 |
+
x=0.5,
|
258 |
+
font=dict(size=12, color=color_palette['text_light'])
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
return fig
|
263 |
+
def create_oa_status_pie_fig(filtered_df):
|
264 |
+
custom_colors = [
|
265 |
+
"#9D84B7",
|
266 |
+
'#4DADFF',
|
267 |
+
'#FFD166',
|
268 |
+
'#06D6A0',
|
269 |
+
'#EF476F'
|
270 |
+
]
|
271 |
+
fig = px.pie(
|
272 |
+
filtered_df,
|
273 |
+
names='oa_status',
|
274 |
+
title="Open Access Status Distribution",
|
275 |
+
color_discrete_sequence=custom_colors
|
276 |
+
)
|
277 |
+
fig.update_traces(
|
278 |
+
textinfo='label+percent',
|
279 |
+
insidetextorientation='radial',
|
280 |
+
textfont=dict(size=14, family='"Poppins", sans-serif'),
|
281 |
+
marker=dict(line=dict(color='#FFFFFF', width=2))
|
282 |
+
)
|
283 |
+
fig.update_layout(
|
284 |
+
title=dict(
|
285 |
+
text="Open Access Status Distribution",
|
286 |
+
font=dict(size=18, family='"Poppins", sans-serif', color="#FF6A3D")
|
287 |
+
),
|
288 |
+
font=dict(family='"Poppins", sans-serif', color='#FFFFFF'),
|
289 |
+
paper_bgcolor='#1A2238', # Bluish-black background
|
290 |
+
plot_bgcolor='#1A2238',
|
291 |
+
margin=dict(t=50, b=20, l=20, r=20),
|
292 |
+
legend=dict(
|
293 |
+
orientation="h",
|
294 |
+
yanchor="bottom",
|
295 |
+
y=-0.2,
|
296 |
+
xanchor="center",
|
297 |
+
x=0.5,
|
298 |
+
font=dict(size=12, color='#FFFFFF')
|
299 |
+
)
|
300 |
+
)
|
301 |
+
return fig
|
302 |
+
def create_type_bar_fig(filtered_df):
|
303 |
+
type_counts = filtered_df['type'].value_counts()
|
304 |
+
vibrant_colors = [
|
305 |
+
'#4361EE', '#3A0CA3', '#4CC9F0',
|
306 |
+
'#F72585', '#7209B7', '#B5179E',
|
307 |
+
'#480CA8', '#560BAD', '#F77F00'
|
308 |
+
]
|
309 |
+
fig = px.bar(
|
310 |
+
type_counts,
|
311 |
+
title="Publication Types",
|
312 |
+
labels={'value': 'Count', 'index': 'Type'},
|
313 |
+
color=type_counts.index,
|
314 |
+
color_discrete_sequence=vibrant_colors[:len(type_counts)]
|
315 |
+
)
|
316 |
+
fig.update_layout(
|
317 |
+
title=dict(
|
318 |
+
text="Publication Types",
|
319 |
+
font=dict(size=20, family='"Poppins", sans-serif', color="#FF6A3D") # Larger font size
|
320 |
+
),
|
321 |
+
xaxis_title="Type",
|
322 |
+
yaxis_title="Count",
|
323 |
+
font=dict(family='"Poppins", sans-serif', color="#FFFFFF", size=14), # Increased font size
|
324 |
+
paper_bgcolor='#1A2238', # Consistent dark background
|
325 |
+
plot_bgcolor='#1A2238', # Consistent dark background
|
326 |
+
margin=dict(t=70, b=60, l=60, r=40), # Increased margins
|
327 |
+
xaxis=dict(
|
328 |
+
tickfont=dict(size=14, color="#FFFFFF"), # Increased tick font size
|
329 |
+
tickangle=-45,
|
330 |
+
gridcolor='rgba(255, 255, 255, 0.1)' # Lighter grid lines
|
331 |
+
),
|
332 |
+
yaxis=dict(
|
333 |
+
tickfont=dict(size=14, color="#FFFFFF"), # Increased tick font size
|
334 |
+
gridcolor='rgba(255, 255, 255, 0.1)' # Lighter grid lines
|
335 |
+
),
|
336 |
+
bargap=0.3, # Increased bar gap
|
337 |
+
)
|
338 |
+
fig.update_traces(
|
339 |
+
marker_line_width=1,
|
340 |
+
marker_line_color='rgba(0, 0, 0, 0.5)',
|
341 |
+
opacity=0.9,
|
342 |
+
hovertemplate='%{y} publications<extra></extra>',
|
343 |
+
texttemplate='%{y}', # Add text labels
|
344 |
+
textposition='outside', # Position labels outside bars
|
345 |
+
textfont=dict(size=14, color='white') # Text label formatting
|
346 |
+
)
|
347 |
+
return fig
|
348 |
+
|
349 |
+
# Function to check if port is in use
|
350 |
+
def is_port_in_use(port):
|
351 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
352 |
+
return s.connect_ex(('localhost', port)) == 0
|
353 |
+
|
354 |
+
# Function to find a free port
|
355 |
+
def find_free_port(start_port=7860):
|
356 |
+
port = start_port
|
357 |
+
while is_port_in_use(port):
|
358 |
+
port += 1
|
359 |
+
return port
|
360 |
+
|
361 |
+
# Function to shutdown any existing dashboard
|
362 |
+
def shutdown_existing_dashboard():
|
363 |
+
global dashboard_process
|
364 |
+
|
365 |
+
# First, check if our port is in use
|
366 |
+
if is_port_in_use(dashboard_port):
|
367 |
+
try:
|
368 |
+
# Kill processes using the port
|
369 |
+
for proc in psutil.process_iter(['pid', 'name', 'connections']):
|
370 |
+
try:
|
371 |
+
for conn in proc.connections():
|
372 |
+
if conn.laddr.port == dashboard_port:
|
373 |
+
print(f"Terminating process {proc.pid} using port {dashboard_port}")
|
374 |
+
proc.terminate()
|
375 |
+
proc.wait(timeout=3)
|
376 |
+
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
|
377 |
+
pass
|
378 |
+
except Exception as e:
|
379 |
+
print(f"Error freeing port {dashboard_port}: {e}")
|
380 |
+
|
381 |
+
# If we're tracking a dashboard process, try to terminate it
|
382 |
+
if dashboard_process is not None:
|
383 |
+
try:
|
384 |
+
# Kill the process if it's still running
|
385 |
+
if dashboard_process.is_alive():
|
386 |
+
parent = psutil.Process(os.getpid())
|
387 |
+
children = parent.children(recursive=True)
|
388 |
+
for process in children:
|
389 |
+
try:
|
390 |
+
process.terminate()
|
391 |
+
except:
|
392 |
+
pass
|
393 |
+
dashboard_process = None
|
394 |
+
except Exception as e:
|
395 |
+
print(f"Error terminating dashboard process: {e}")
|
396 |
+
dashboard_process = None # Reset the reference anyway
|
397 |
+
|
398 |
+
# Pydantic model for request validation
|
399 |
+
class DashboardRequest(BaseModel):
|
400 |
+
userId: str
|
401 |
+
topic: str
|
402 |
+
year: int
|
403 |
+
|
404 |
+
@router.post("/load_and_display_dashboard/")
|
405 |
+
async def load_and_display_dashboard(request: DashboardRequest, req:Request):
|
406 |
+
global dashboard_process, dashboard_port
|
407 |
+
|
408 |
+
# Make sure any existing dashboard is shut down
|
409 |
+
shutdown_existing_dashboard()
|
410 |
+
|
411 |
+
# Find a free port
|
412 |
+
dashboard_port = find_free_port()
|
413 |
+
|
414 |
+
try:
|
415 |
+
# Load data from MongoDB
|
416 |
+
df = await load_data_from_mongodb(request.userId, request.topic, request.year, req)
|
417 |
+
|
418 |
+
# Get date range for the slider
|
419 |
+
global min_date, max_date, date_range, date_marks
|
420 |
+
min_date = df['publication_date'].min()
|
421 |
+
max_date = df['publication_date'].max()
|
422 |
+
date_range = pd.date_range(start=min_date, end=max_date, freq='MS')
|
423 |
+
date_marks = {i: date.strftime('%b %Y') for i, date in enumerate(date_range)}
|
424 |
+
|
425 |
+
# Function to create and run the dashboard
|
426 |
+
def create_and_run_dashboard():
|
427 |
+
# Create a new app instance
|
428 |
+
app = Dash(__name__, suppress_callback_exceptions=True)
|
429 |
+
app.cluster_metadata = {}
|
430 |
+
color_palette = {
|
431 |
+
'background': '#1A2238', # Dark blue background
|
432 |
+
'card_bg': '#F8F8FF', # Off-white for cards
|
433 |
+
'accent1': '#FF6A3D', # Vibrant orange for highlights
|
434 |
+
'accent2': '#4ECCA3', # Teal for secondary elements
|
435 |
+
'accent3': '#9D84B7', # Lavender for tertiary elements
|
436 |
+
'text_light': '#FFFFFF', # White text
|
437 |
+
'text_dark': '#2D3748', # Dark gray text
|
438 |
+
}
|
439 |
+
|
440 |
+
# Define modern styling for containers
|
441 |
+
container_style = {
|
442 |
+
'padding': '5px',
|
443 |
+
'backgroundColor': color_palette['text_dark'],
|
444 |
+
'borderRadius': '12px',
|
445 |
+
'boxShadow': '0 4px 12px rgba(0, 0, 0, 0.15)',
|
446 |
+
'marginBottom': '25px',
|
447 |
+
'border': f'1px solid rgba(255, 255, 255, 0.2)',
|
448 |
+
|
449 |
+
}
|
450 |
+
|
451 |
+
hidden_style = {**container_style, 'display': 'none'}
|
452 |
+
visible_style = {**container_style}
|
453 |
+
|
454 |
+
# Create a modern, attractive layout
|
455 |
+
app.layout = html.Div([
|
456 |
+
# Header section with gradient background
|
457 |
+
html.Div([
|
458 |
+
html.H1(request.topic.capitalize() + " Analytics Dashboard", style={
|
459 |
+
'textAlign': 'center',
|
460 |
+
'marginBottom': '10px',
|
461 |
+
'color': color_palette['accent1'],
|
462 |
+
'fontSize': '2.5rem',
|
463 |
+
'fontWeight': '700',
|
464 |
+
'letterSpacing': '0.5px',
|
465 |
+
}),
|
466 |
+
html.Div([
|
467 |
+
html.P("Research Publication Analysis & Knowledge Mapping", style={
|
468 |
+
'textAlign': 'center',
|
469 |
+
'color': color_palette['text_light'],
|
470 |
+
'opacity': '0.8',
|
471 |
+
'fontSize': '1.2rem',
|
472 |
+
'marginTop': '0',
|
473 |
+
})
|
474 |
+
])
|
475 |
+
], style={
|
476 |
+
'background': f'linear-gradient(135deg, {color_palette["background"]}, #364156)',
|
477 |
+
'padding': '30px 20px',
|
478 |
+
'borderRadius': '12px',
|
479 |
+
'marginBottom': '25px',
|
480 |
+
'boxShadow': '0 4px 20px rgba(0, 0, 0, 0.2)',
|
481 |
+
}),
|
482 |
+
|
483 |
+
# Controls section
|
484 |
+
html.Div([
|
485 |
+
html.Div([
|
486 |
+
html.Button(
|
487 |
+
id='view-toggle',
|
488 |
+
children='Switch to Venue View',
|
489 |
+
style={
|
490 |
+
'padding': '12px 20px',
|
491 |
+
'fontSize': '1rem',
|
492 |
+
'borderRadius': '8px',
|
493 |
+
'border': 'none',
|
494 |
+
'backgroundColor': color_palette['accent1'],
|
495 |
+
'color': 'white',
|
496 |
+
'cursor': 'pointer',
|
497 |
+
'boxShadow': '0 2px 5px rgba(0, 0, 0, 0.1)',
|
498 |
+
'transition': 'all 0.3s ease',
|
499 |
+
'marginRight': '20px',
|
500 |
+
'fontWeight': '500',
|
501 |
+
}
|
502 |
+
),
|
503 |
+
html.H3("Filter by Publication Date", style={
|
504 |
+
'marginBottom': '15px',
|
505 |
+
'color': color_palette['text_dark'],
|
506 |
+
'fontSize': '1.3rem',
|
507 |
+
'fontWeight': '600',
|
508 |
+
}),
|
509 |
+
], style={'display': 'flex', 'alignItems': 'center', 'marginBottom': '15px'}),
|
510 |
+
|
511 |
+
dcc.RangeSlider(
|
512 |
+
id='date-slider',
|
513 |
+
min=0,
|
514 |
+
max=len(date_range) - 1,
|
515 |
+
value=[0, len(date_range) - 1],
|
516 |
+
marks=date_marks if len(date_marks) <= 12 else {
|
517 |
+
i: date_marks[i] for i in range(0, len(date_range), max(1, len(date_range) // 12))
|
518 |
+
},
|
519 |
+
step=1,
|
520 |
+
tooltip={"placement": "bottom", "always_visible": True},
|
521 |
+
updatemode='mouseup'
|
522 |
+
),
|
523 |
+
html.Div(id='date-range-display', style={
|
524 |
+
'textAlign': 'center',
|
525 |
+
'marginTop': '12px',
|
526 |
+
'fontSize': '1.1rem',
|
527 |
+
'fontWeight': '500',
|
528 |
+
'color': color_palette['accent1'],
|
529 |
+
})
|
530 |
+
], style={**container_style, 'marginBottom': '25px'}),
|
531 |
+
|
532 |
+
# Knowledge map - main visualization
|
533 |
+
html.Div([
|
534 |
+
dcc.Graph(
|
535 |
+
id='knowledge-map',
|
536 |
+
style={'width': '100%', 'height': '700px'},
|
537 |
+
config={'scrollZoom': True, 'displayModeBar': True, 'responsive': True}
|
538 |
+
)
|
539 |
+
], style={
|
540 |
+
**container_style,
|
541 |
+
'height': '750px',
|
542 |
+
'marginBottom': '25px',
|
543 |
+
'background': f'linear-gradient(to bottom right, {color_palette["card_bg"]}, #F0F0F8)',
|
544 |
+
}),
|
545 |
+
|
546 |
+
# Details container - appears when clicking elements
|
547 |
+
html.Div([
|
548 |
+
html.H3(id='details-title', style={
|
549 |
+
'marginBottom': '15px',
|
550 |
+
'color': color_palette['accent1'],
|
551 |
+
'fontSize': '1.4rem',
|
552 |
+
'fontWeight': '600',
|
553 |
+
}),
|
554 |
+
html.Div(id='details-content', style={
|
555 |
+
'maxHeight': '350px',
|
556 |
+
'overflowY': 'auto',
|
557 |
+
'padding': '10px',
|
558 |
+
'borderRadius': '8px',
|
559 |
+
'backgroundColor': 'rgba(255, 255, 255, 0.7)',
|
560 |
+
})
|
561 |
+
], id='details-container', style=hidden_style),
|
562 |
+
|
563 |
+
# Charts in flex container
|
564 |
+
html.Div([
|
565 |
+
html.Div([
|
566 |
+
dcc.Graph(
|
567 |
+
id='oa-pie-chart',
|
568 |
+
style={'width': '100%', 'height': '350px'},
|
569 |
+
config={'displayModeBar': False, 'responsive': True}
|
570 |
+
)
|
571 |
+
], style={
|
572 |
+
'flex': 1,
|
573 |
+
**container_style,
|
574 |
+
'margin': '0 10px',
|
575 |
+
'height': '400px',
|
576 |
+
'transition': 'transform 0.3s ease',
|
577 |
+
':hover': {'transform': 'translateY(-5px)'},
|
578 |
+
}),
|
579 |
+
html.Div([
|
580 |
+
dcc.Graph(
|
581 |
+
id='oa-status-pie-chart',
|
582 |
+
style={'width': '100%', 'height': '350px'},
|
583 |
+
config={'displayModeBar': False, 'responsive': True}
|
584 |
+
)
|
585 |
+
], style={
|
586 |
+
'flex': 1,
|
587 |
+
**container_style,
|
588 |
+
'margin': '0 10px',
|
589 |
+
'height': '400px',
|
590 |
+
'transition': 'transform 0.3s ease',
|
591 |
+
':hover': {'transform': 'translateY(-5px)'},
|
592 |
+
})
|
593 |
+
], style={'display': 'flex', 'marginBottom': '25px', 'height': '420px'}),
|
594 |
+
|
595 |
+
# Bar chart container
|
596 |
+
# Increase bar chart height and improve visibility
|
597 |
+
html.Div([
|
598 |
+
dcc.Graph(
|
599 |
+
id='type-bar-chart',
|
600 |
+
style={'width': '100%', 'height': '50vh'}, # Reduced from 60vh
|
601 |
+
config={'displayModeBar': False, 'responsive': True}
|
602 |
+
)
|
603 |
+
], style={
|
604 |
+
**container_style,
|
605 |
+
'height': '500px', # Decreased from 650px
|
606 |
+
'background': 'rgba(26, 34, 56, 1)',
|
607 |
+
'marginBottom': '10px', # Added smaller bottom margin
|
608 |
+
}),
|
609 |
+
# Store components for state
|
610 |
+
dcc.Store(id='filtered-df-info'),
|
611 |
+
dcc.Store(id='current-view', data='host'),
|
612 |
+
html.Div(id='load-trigger', children='trigger-initial-load', style={'display': 'none'})
|
613 |
+
], style={
|
614 |
+
'fontFamily': '"Poppins", "Segoe UI", Arial, sans-serif',
|
615 |
+
'backgroundColor': '#121212', # Dark background
|
616 |
+
'backgroundImage': 'none', # Remove gradient
|
617 |
+
'padding': '30px',
|
618 |
+
'maxWidth': '1800px',
|
619 |
+
'margin': '0 auto',
|
620 |
+
'minHeight': '100vh',
|
621 |
+
'color': color_palette['text_light'],
|
622 |
+
'paddingBottom': '10px',
|
623 |
+
})
|
624 |
+
|
625 |
+
|
626 |
+
|
627 |
+
@app.callback(
|
628 |
+
[Output('current-view', 'data'),
|
629 |
+
Output('view-toggle', 'children')],
|
630 |
+
[Input('view-toggle', 'n_clicks')],
|
631 |
+
[State('current-view', 'data')]
|
632 |
+
)
|
633 |
+
def toggle_view(n_clicks, current_view):
|
634 |
+
if not n_clicks:
|
635 |
+
return current_view, 'Switch to Venue View' if current_view == 'host' else 'Switch to Host View'
|
636 |
+
new_view = 'venue' if current_view == 'host' else 'host'
|
637 |
+
new_button_text = 'Switch to Host View' if new_view == 'venue' else 'Switch to Venue View'
|
638 |
+
return new_view, new_button_text
|
639 |
+
|
640 |
+
@app.callback(
|
641 |
+
Output('date-range-display', 'children'),
|
642 |
+
[Input('date-slider', 'value')]
|
643 |
+
)
|
644 |
+
def update_date_range_display(date_range_indices):
|
645 |
+
start_date = date_range[date_range_indices[0]]
|
646 |
+
end_date = date_range[date_range_indices[1]]
|
647 |
+
return f"Selected period: {start_date.strftime('%b %Y')} to {end_date.strftime('%b %Y')}"
|
648 |
+
|
649 |
+
@app.callback(
|
650 |
+
[Output('knowledge-map', 'figure'),
|
651 |
+
Output('oa-pie-chart', 'figure'),
|
652 |
+
Output('oa-status-pie-chart', 'figure'),
|
653 |
+
Output('type-bar-chart', 'figure'),
|
654 |
+
Output('filtered-df-info', 'data'),
|
655 |
+
Output('details-container', 'style')],
|
656 |
+
[Input('date-slider', 'value'),
|
657 |
+
Input('current-view', 'data'),
|
658 |
+
Input('load-trigger', 'children')] # Added trigger
|
659 |
+
)
|
660 |
+
def update_visualizations(date_range_indices, current_view, _):
|
661 |
+
filtered_df = filter_by_date_range(df, date_range_indices[0], date_range_indices[1])
|
662 |
+
knowledge_map_fig, cluster_metadata = create_knowledge_map(filtered_df, current_view)
|
663 |
+
app.cluster_metadata = cluster_metadata
|
664 |
+
filtered_info = {
|
665 |
+
'start_idx': date_range_indices[0],
|
666 |
+
'end_idx': date_range_indices[1],
|
667 |
+
'start_date': date_range[date_range_indices[0]].strftime('%Y-%m-%d'),
|
668 |
+
'end_date': date_range[date_range_indices[1]].strftime('%Y-%m-%d'),
|
669 |
+
'record_count': len(filtered_df),
|
670 |
+
'view_type': current_view
|
671 |
+
}
|
672 |
+
return (
|
673 |
+
knowledge_map_fig,
|
674 |
+
create_oa_pie_fig(filtered_df),
|
675 |
+
create_oa_status_pie_fig(filtered_df),
|
676 |
+
create_type_bar_fig(filtered_df),
|
677 |
+
filtered_info,
|
678 |
+
hidden_style
|
679 |
+
)
|
680 |
+
|
681 |
+
@app.callback(
|
682 |
+
[Output('details-container', 'style', allow_duplicate=True),
|
683 |
+
Output('details-title', 'children'),
|
684 |
+
Output('details-content', 'children')],
|
685 |
+
[Input('knowledge-map', 'clickData')],
|
686 |
+
[State('filtered-df-info', 'data')],
|
687 |
+
prevent_initial_call=True
|
688 |
+
)
|
689 |
+
def display_details(clickData, filtered_info):
|
690 |
+
if not clickData or not filtered_info:
|
691 |
+
return hidden_style, "", []
|
692 |
+
customdata = clickData['points'][0]['customdata']
|
693 |
+
view_type = filtered_info['view_type']
|
694 |
+
entity_type = "Organization" if view_type == 'host' else "Venue"
|
695 |
+
if len(customdata) >= 2 and customdata[-1] == "cluster":
|
696 |
+
count = customdata[0]
|
697 |
+
if count not in app.cluster_metadata:
|
698 |
+
return hidden_style, "", []
|
699 |
+
entities = app.cluster_metadata[count]['entities']
|
700 |
+
color = app.cluster_metadata[count]['color']['start']
|
701 |
+
table_header = [
|
702 |
+
html.Thead(html.Tr([
|
703 |
+
html.Th(f"{entity_type} Name", style={'padding': '8px'}),
|
704 |
+
html.Th(f"{entity_type} ID", style={'padding': '8px'}),
|
705 |
+
html.Th("Papers", style={'padding': '8px', 'textAlign': 'center'}),
|
706 |
+
html.Th("Open Access %", style={'padding': '8px', 'textAlign': 'center'})
|
707 |
+
], style={'backgroundColor': color_palette['accent1'], 'color': 'white'}))
|
708 |
+
]
|
709 |
+
|
710 |
+
# Update row styles
|
711 |
+
row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
|
712 |
+
rows = []
|
713 |
+
for i, entity in enumerate(sorted(entities, key=lambda x: x['paper_count'], reverse=True)):
|
714 |
+
row_style = {'backgroundColor': '#f9f9f9'} if i % 2 == 0 else {'backgroundColor': 'white'}
|
715 |
+
entity_name_link = html.A(
|
716 |
+
entity[f"{view_type}_organization_name" if view_type == 'host' else "venue"],
|
717 |
+
href=entity['entity_id'],
|
718 |
+
target="_blank",
|
719 |
+
style={'color': color, 'textDecoration': 'underline'}
|
720 |
+
)
|
721 |
+
entity_id_link = html.A(
|
722 |
+
entity['entity_id'].split('/')[-1],
|
723 |
+
href=entity['entity_id'],
|
724 |
+
target="_blank",
|
725 |
+
style={'color': color, 'textDecoration': 'underline'}
|
726 |
+
)
|
727 |
+
rows.append(html.Tr([
|
728 |
+
html.Td(entity_name_link, style={'padding': '8px'}),
|
729 |
+
html.Td(entity_id_link, style={'padding': '8px'}),
|
730 |
+
html.Td(entity['paper_count'], style={'padding': '8px', 'textAlign': 'center'}),
|
731 |
+
html.Td(f"{entity['is_oa']:.1%}", style={'padding': '8px', 'textAlign': 'center'})
|
732 |
+
], style=row_style))
|
733 |
+
table = html.Table(table_header + [html.Tbody(rows)], style={
|
734 |
+
'width': '100%',
|
735 |
+
'borderCollapse': 'collapse',
|
736 |
+
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
|
737 |
+
})
|
738 |
+
return (
|
739 |
+
visible_style,
|
740 |
+
f"{entity_type}s with {count} papers",
|
741 |
+
[html.P(f"Showing {len(entities)} {entity_type.lower()}s during selected period"), table]
|
742 |
+
)
|
743 |
+
elif len(customdata) >= 6 and customdata[-1] == "entity":
|
744 |
+
entity_name = customdata[0]
|
745 |
+
entity_id = customdata[3]
|
746 |
+
cluster_count = customdata[4]
|
747 |
+
color = app.cluster_metadata[cluster_count]['color']['start']
|
748 |
+
if view_type == 'host':
|
749 |
+
entity_papers = df[df['host_organization_name'] == entity_name].copy()
|
750 |
+
else:
|
751 |
+
entity_papers = df[df['venue'] == entity_name].copy()
|
752 |
+
entity_papers = entity_papers[
|
753 |
+
(entity_papers['publication_date'] >= pd.to_datetime(filtered_info['start_date'])) &
|
754 |
+
(entity_papers['publication_date'] <= pd.to_datetime(filtered_info['end_date']))
|
755 |
+
]
|
756 |
+
entity_name_link = html.A(
|
757 |
+
entity_name,
|
758 |
+
href=entity_id,
|
759 |
+
target="_blank",
|
760 |
+
style={'color': color, 'textDecoration': 'underline', 'fontSize': '1.2em'}
|
761 |
+
)
|
762 |
+
entity_id_link = html.A(
|
763 |
+
entity_id.split('/')[-1],
|
764 |
+
href=entity_id,
|
765 |
+
target="_blank",
|
766 |
+
style={'color': color, 'textDecoration': 'underline'}
|
767 |
+
)
|
768 |
+
header = [
|
769 |
+
html.Div([
|
770 |
+
html.Span("Name: ", style={'fontWeight': 'bold'}),
|
771 |
+
entity_name_link
|
772 |
+
], style={'marginBottom': '10px'}),
|
773 |
+
html.Div([
|
774 |
+
html.Span("ID: ", style={'fontWeight': 'bold'}),
|
775 |
+
entity_id_link
|
776 |
+
], style={'marginBottom': '10px'}),
|
777 |
+
html.Div([
|
778 |
+
html.Span(f"Papers: {len(entity_papers)}", style={'marginRight': '20px'}),
|
779 |
+
], style={'marginBottom': '20px'})
|
780 |
+
]
|
781 |
+
table_header = [
|
782 |
+
html.Thead(html.Tr([
|
783 |
+
html.Th("Paper ID", style={'padding': '8px'}),
|
784 |
+
html.Th("Type", style={'padding': '8px'}),
|
785 |
+
html.Th("OA Status", style={'padding': '8px', 'textAlign': 'center'}),
|
786 |
+
html.Th("Publication Date", style={'padding': '8px', 'textAlign': 'center'})
|
787 |
+
], style={'backgroundColor': color, 'color': 'white'}))
|
788 |
+
]
|
789 |
+
rows = []
|
790 |
+
for i, (_, paper) in enumerate(entity_papers.sort_values('publication_date', ascending=False).iterrows()):
|
791 |
+
row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
|
792 |
+
paper_link = html.A(
|
793 |
+
paper['id'],
|
794 |
+
href=paper['id'],
|
795 |
+
target="_blank",
|
796 |
+
style={'color': color, 'textDecoration': 'underline'}
|
797 |
+
)
|
798 |
+
rows.append(html.Tr([
|
799 |
+
html.Td(paper_link, style={'padding': '8px'}),
|
800 |
+
html.Td(paper['type'], style={'padding': '8px'}),
|
801 |
+
html.Td(paper['oa_status'], style={'padding': '8px', 'textAlign': 'center'}),
|
802 |
+
html.Td(paper['publication_date'].strftime('%Y-%m-%d'), style={'padding': '8px', 'textAlign': 'center'})
|
803 |
+
], style=row_style))
|
804 |
+
table = html.Table(table_header + [html.Tbody(rows)], style={
|
805 |
+
'width': '100%',
|
806 |
+
'borderCollapse': 'collapse',
|
807 |
+
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
|
808 |
+
})
|
809 |
+
with open("dashboard.html", "w") as f:
|
810 |
+
f.write(app.index())
|
811 |
+
print("yup saved!!")
|
812 |
+
return visible_style, f"{entity_type} Papers", header + [table]
|
813 |
+
return hidden_style, "", []
|
814 |
+
|
815 |
+
# Start the Dash app
|
816 |
+
app.run_server(debug=False, port=dashboard_port, use_reloader=False)
|
817 |
+
|
818 |
+
# Run the dashboard in a separate process
|
819 |
+
dashboard_process = threading.Thread(target=create_and_run_dashboard)
|
820 |
+
dashboard_process.daemon = True
|
821 |
+
dashboard_process.start()
|
822 |
+
|
823 |
+
# Open the browser after a delay
|
824 |
+
def open_browser():
|
825 |
+
try:
|
826 |
+
webbrowser.open_new(f"http://127.0.0.1:{dashboard_port}/")
|
827 |
+
except:
|
828 |
+
pass
|
829 |
+
|
830 |
+
threading.Timer(1.5, open_browser).start()
|
831 |
+
|
832 |
+
return {"status": "success", "message": f"Dashboard loaded successfully on port {dashboard_port}."}
|
833 |
+
|
834 |
+
except Exception as e:
|
835 |
+
# Clean up in case of failure
|
836 |
+
shutdown_existing_dashboard()
|
837 |
raise HTTPException(status_code=400, detail=str(e))
|