Spaces:
Paused
Paused
import torch | |
import torchvision.transforms.functional as F | |
from PIL import Image | |
from src.pix2pix_turbo import Pix2Pix_Turbo | |
# Initialize the model | |
model = Pix2Pix_Turbo("sketch_to_image_stochastic") | |
# Load the sketch image | |
sketch_path = "sketch.png" | |
image = Image.open(sketch_path).convert("RGB") | |
# Define the prompt | |
prompt = "ethereal fantasy concept art of . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy," | |
# Convert the image to a tensor | |
#image_tensor = F.to_tensor(image) > 0.5 | |
image = image.convert("RGB") | |
image_t = F.to_tensor(image) > 0.5 | |
# Processing parameters | |
seed = 42 | |
val_r = 0.4 | |
# Run the model inference | |
with torch.no_grad(): | |
c_t = image_t.unsqueeze(0).cuda().float() | |
torch.manual_seed(seed) | |
B, C, H, W = c_t.shape | |
noise = torch.randn((1, 4, H // 8, W // 8), device=c_t.device) | |
output_image = model(c_t, prompt, deterministic=False, r=val_r, noise_map=noise) | |
# Convert the output tensor to an image | |
output_pil = F.to_pil_image(output_image[0].cpu() * 0.5 + 0.5) | |
# Save the output image | |
output_path = "output.png" | |
output_pil.save(output_path) | |
print(f"Processing complete. The output image is saved as {output_path}.") | |