import torch import torchvision.transforms.functional as F from PIL import Image from src.pix2pix_turbo import Pix2Pix_Turbo # Initialize the model model = Pix2Pix_Turbo("sketch_to_image_stochastic") # Load the sketch image sketch_path = "sketch.png" image = Image.open(sketch_path).convert("RGB") # Define the prompt prompt = "ethereal fantasy concept art of . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy," # Convert the image to a tensor #image_tensor = F.to_tensor(image) > 0.5 image = image.convert("RGB") image_t = F.to_tensor(image) > 0.5 # Processing parameters seed = 42 val_r = 0.4 # Run the model inference with torch.no_grad(): c_t = image_t.unsqueeze(0).cuda().float() torch.manual_seed(seed) B, C, H, W = c_t.shape noise = torch.randn((1, 4, H // 8, W // 8), device=c_t.device) output_image = model(c_t, prompt, deterministic=False, r=val_r, noise_map=noise) # Convert the output tensor to an image output_pil = F.to_pil_image(output_image[0].cpu() * 0.5 + 0.5) # Save the output image output_path = "output.png" output_pil.save(output_path) print(f"Processing complete. The output image is saved as {output_path}.")