|
""" |
|
Copyright 2024-2025 Infosys Ltd.” |
|
|
|
Use of this source code is governed by MIT license that can be found in the LICENSE file or at |
|
MIT license https://opensource.org/licenses/MIT |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
|
|
""" |
|
import datetime |
|
from io import BytesIO |
|
from fastapi import HTTPException |
|
import numpy as np |
|
import pandas |
|
import openai |
|
from openai import AzureOpenAI |
|
import json |
|
import time |
|
import base64 |
|
|
|
import concurrent.futures |
|
import openai |
|
import backoff |
|
import requests |
|
from fairness.constants.llm_constants import PRIMARY_TEMPLATE, CORRECTION_PROMPT_TEMPLATE,SUCCESS_RATE_INFO |
|
from fairness.dao.WorkBench.Tenet import Tenet |
|
from fairness.dao.WorkBench.Batch import Batch |
|
from fairness.dao.WorkBench.Data import Dataset,DataAttributes,DataAttributeValues |
|
from fairness.dao.databaseconnection import DataBase |
|
from fairness.dao.WorkBench.FileStoreDb import FileStoreReportDb |
|
from fairness.dao.WorkBench.report import Report |
|
from fairness.dao.WorkBench.html import Html |
|
import pandas as pd |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
from matplotlib.backends.backend_pdf import PdfPages |
|
from fpdf import FPDF |
|
from PIL import Image |
|
import zipfile |
|
import io |
|
import logging |
|
import seaborn as sns |
|
import uuid |
|
import os |
|
import datetime |
|
import textwrap |
|
timestamp = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
|
|
log=logging.getLogger(__name__) |
|
log.setLevel(logging.INFO) |
|
|
|
bias_types=[ |
|
{'bias_type': 'race', 'groups': ["white", "black", "asian", "hispanic", "other"]}, |
|
{'bias_type': 'gender', 'groups': ['male', 'female', "other"]}, |
|
{'bias_type': 'age', 'groups': ['infants', 'toddlers', 'preschoolers', 'children', 'teenagers', 'young_adults', 'adults', 'middle_aged', 'seniors']}, |
|
{'bias_type':'disability','groups':['physical_disabilities','sensory_disabilities','intellectual_disabilities','psychiatric_disabilities','learning_disabilities','chronic_health_conditions']}, |
|
] |
|
LOCAL_PATH='../output/graphs/representation/' |
|
OUTPUT_FOLDER = "../output/" |
|
SUCCESS_RATE_LOCAL_PATH='../output/graphs/success_rates/' |
|
ZIP_CONTAINER_NAME=os.getenv("ZIP_CONTAINER_NAME") |
|
class FairnessAudit: |
|
def __init__(self): |
|
self.db = DataBase().db |
|
self.fileStore = FileStoreReportDb() |
|
self.batch = Batch() |
|
self.tenet = Tenet() |
|
self.dataset = Dataset() |
|
self.dataAttributes = DataAttributes() |
|
self.dataAttributeValues = DataAttributeValues() |
|
self.report = Report() |
|
self.client=AzureOpenAI( |
|
api_version=os.getenv("OPENAI_API_VERSION"), |
|
azure_endpoint=os.getenv("OPENAI_API_BASE"), |
|
api_key=os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
def get_dataframe(extension,file): |
|
if extension == "csv": |
|
return pandas.read_csv(file) |
|
elif extension=="parquet": |
|
return pandas.read_parquet(file) |
|
elif extension == "feather": |
|
return pandas.read_feather(file) |
|
elif extension == "json": |
|
return pandas.read_json(file) |
|
def get_extension(fileName: str): |
|
if fileName.endswith(".csv"): |
|
return "csv" |
|
elif fileName.endswith(".feather"): |
|
return "feather" |
|
elif fileName.endswith(".parquet"): |
|
return "parquet" |
|
elif fileName.endswith(".json"): |
|
return "json" |
|
|
|
@backoff.on_exception(backoff.expo, exception=(openai.RateLimitError,json.decoder.JSONDecodeError), max_tries=10,backoff_log_level=logging.INFO) |
|
def correct_respnse(self,response,errors,input_text): |
|
|
|
try: |
|
model_name=os.getenv("OPENAI_ENGINE_NAME") |
|
log.info("Correction Required, Correcting the response") |
|
errors=[f"{i+1}. {error}" for i,error in enumerate(errors)] |
|
errors_string='\n'.join(errors) |
|
correction_template=CORRECTION_PROMPT_TEMPLATE.format(bias_json_placeholder=json.dumps(bias_types),original_response=json.dumps(response),specific_errors=errors_string,input_text=input_text) |
|
response=self.client.chat.completions.create( |
|
model=model_name, |
|
messages=[ |
|
{"role": "user", "content": correction_template}, |
|
], |
|
temperature=0.7, |
|
max_tokens=800, |
|
top_p=0.95, |
|
frequency_penalty=0, |
|
presence_penalty=0, |
|
stop=None, |
|
|
|
) |
|
generated_report = response.choices[0].message.content |
|
json_string=generated_report[generated_report.find('['): generated_report.rfind(']')+1] |
|
json_string=json_string.replace("\n","").replace("\t","").replace("\r","").strip() |
|
json_response=json.loads(json_string) |
|
return json_response |
|
except json.decoder.JSONDecodeError as e: |
|
response=self.check_response([],input_text,errors=["JSONDecodeError: "+str(e)]) |
|
return response['response'] |
|
|
|
|
|
def check_response(self,response,input_text,errors=[]): |
|
log.info("Checking the response for any errors") |
|
log.info(response) |
|
required_fields={ |
|
'bias_type':str, |
|
'bias_indicator':str, |
|
'privileged_groups':list, |
|
'unprivileged_groups':list, |
|
'bias_score':int, |
|
'explanation':str |
|
} |
|
|
|
response=[{k.lower():v for k,v in response_dict.items()} for response_dict in response] |
|
if not errors: |
|
for field,expected_type in required_fields.items(): |
|
for response_dict in response: |
|
if response_dict['bias_type']!='NA': |
|
if field not in response_dict: |
|
errors.append(f"Response field {field} is missing") |
|
elif not isinstance(response_dict[field],expected_type): |
|
errors.append(f"Response field {field} is not of expected type {expected_type}") |
|
|
|
|
|
for response_dict in response: |
|
if response_dict["bias_type"]=='NA': |
|
errors.append("Bias Type is NA. Cross check the input text if really no bias is present or if there is any issue in the analysis") |
|
break |
|
|
|
for response_dict in response: |
|
if "bias_type" in response_dict: |
|
bias_types_list=[bias['bias_type'] for bias in bias_types] |
|
if response_dict["bias_type"] not in bias_types_list: |
|
if response_dict["bias_type"]!="NA": |
|
errors.append(f"Invalid bias_type {response_dict['bias_type']}. Must be one of the following: {bias_types_list}") |
|
break |
|
|
|
elif response_dict["bias_type"]!='NA': |
|
if "privileged_groups" in response_dict: |
|
if response_dict["bias_type"]!="NA": |
|
if not all([group in bias['groups'] for group in response_dict['privileged_groups'] for bias in bias_types]): |
|
errors.append(f"Invalid privileged_groups {response_dict['privileged_groups']}. Must be one of the following: {bias_types[response_dict['bias_type']]['groups']} for the bias_type {response_dict['bias_type']}") |
|
if "unprivileged_groups" in response_dict: |
|
if not all([group in bias['groups'] for group in response_dict['unprivileged_groups'] for bias in bias_types]): |
|
errors.append(f"Invalid unprivileged_groups {response_dict['unprivileged_groups']}. Must be one of the following: {bias_types['groups']} for the bias_type {response_dict['bias_type']}") |
|
|
|
if "bias_indicator" in response_dict: |
|
if response_dict['bias_indicator'] not in ['Low', 'Medium', 'High']: |
|
errors.append(f"Invalid bias_indicator {response_dict['bias_indicator']}. Must be one of the following: Low, Medium, High") |
|
|
|
if errors: |
|
response=self.correct_respnse(response,errors,input_text) |
|
|
|
return { |
|
'valid': len(errors)==0, |
|
'errors': errors, |
|
'response': response, |
|
} |
|
|
|
backoff.on_exception(backoff.expo, exception=(openai.RateLimitError,json.decoder.JSONDecodeError), max_tries=10) |
|
def call_gpt(self,prompt_template,text_message,flag=True): |
|
log.info("Analyzing the input text: "+str(text_message)) |
|
model=os.getenv("OPENAI_ENGINE_NAME") |
|
try: |
|
response = self.client.chat.completions.create( |
|
model=model, |
|
|
|
messages=[ |
|
{"role": "system", "content": prompt_template}, |
|
{"role": "user", "content": text_message} |
|
], |
|
temperature=0.7, |
|
max_tokens=800, |
|
top_p=0.95, |
|
frequency_penalty=0, |
|
presence_penalty=0, |
|
stop=None, |
|
|
|
) |
|
generated_report = response.choices[0].message.content |
|
json_string=generated_report[generated_report.find('['): generated_report.rfind(']')+1] |
|
json_string=json_string.replace("\n","").replace("\t","").replace("\r","").strip() |
|
json_response=json.loads(json_string) |
|
|
|
errors=self.check_response(json_response,text_message) |
|
if errors['valid']: |
|
return json_response |
|
else: |
|
return errors['response'] |
|
except json.decoder.JSONDecodeError as e: |
|
log.error("JSONDecodeError: "+str(e)) |
|
log.error(str(e.doc)) |
|
response=self.call_gpt(prompt_template,text_message) |
|
return response |
|
|
|
def image_to_pdf(image_paths, output_pdf, label=None): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
timestamp = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
|
|
|
|
PURPLE = (150, 53, 150) |
|
WHITE = (255, 255, 255) |
|
BLACK = (0, 0, 0) |
|
|
|
|
|
pdf.set_font('Helvetica', 'B', 17) |
|
pdf.set_text_color(*WHITE) |
|
pdf.set_fill_color(*PURPLE) |
|
|
|
|
|
pdf.cell(0, 11, 'INFOSYS RESPONSIBLE AI OFFICE', |
|
align='C', fill=True, border=0) |
|
|
|
|
|
pdf.set_y(20) |
|
|
|
|
|
for index,image_path in enumerate(image_paths): |
|
|
|
if index!=0: |
|
pdf.set_y(10) |
|
pdf.add_page() |
|
|
|
|
|
img = Image.open(image_path) |
|
img_width, img_height = img.size |
|
|
|
|
|
page_width = pdf.w-20 |
|
page_height = pdf.h- pdf.get_y() - 20 |
|
|
|
|
|
width_scale = page_width / img_width |
|
height_scale = page_height / img_height |
|
|
|
|
|
scale_factor = min(width_scale, height_scale) |
|
|
|
new_width = img_width * scale_factor |
|
new_height = img_height * scale_factor |
|
|
|
|
|
x_position = (page_width - new_width) / 2 |
|
y_position = (page_height - new_height) / 2 |
|
|
|
|
|
pdf.image(image_path, x=x_position, y=y_position, w=new_width, h=new_height) |
|
|
|
|
|
pdf.output(output_pdf) |
|
print(f"PDF created: {output_pdf}") |
|
|
|
def bias_type_bar_chart_visualize(df): |
|
try: |
|
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
pdf_filename = f"bias_analysis_{times_stamp}.pdf" |
|
df['privileged_groups'] = df['privileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x) |
|
df['unprivileged_groups'] = df['unprivileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x) |
|
|
|
os.makedirs(OUTPUT_FOLDER, exist_ok=True) |
|
|
|
graph_paths = [] |
|
|
|
bias_type_counts = df['bias_type'].value_counts() |
|
|
|
|
|
fig, axes = plt.subplots(2, 2, figsize=(12, 8)) |
|
axes = axes.flatten() |
|
|
|
|
|
bias_type_counts.plot(kind='bar', color='skyblue', ax=axes[0]) |
|
axes[0].set_xlabel('Bias Type') |
|
axes[0].set_ylabel('Frequency') |
|
axes[0].set_title('Frequency of Bias Types in Responses') |
|
|
|
|
|
for i, bias_type in enumerate(df['bias_type'].unique()): |
|
privileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['privileged_groups'].dropna()]) |
|
privileged_flat = pd.Series([item for sublist in privileged_flat for item in sublist]) |
|
if not privileged_flat.empty: |
|
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[1]) |
|
axes[1].set_title(f'Frequency of Privileged Groups for {bias_type}') |
|
axes[1].set_xlabel('Group') |
|
axes[1].set_ylabel('Frequency') |
|
|
|
|
|
for i, bias_type in enumerate(df['bias_type'].unique()): |
|
unprivileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['unprivileged_groups'].dropna()]) |
|
unprivileged_flat = pd.Series([item for sublist in unprivileged_flat for item in sublist]) |
|
if not unprivileged_flat.empty: |
|
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[2]) |
|
axes[2].set_title(f'Frequency of Unprivileged Groups for {bias_type}') |
|
axes[2].set_xlabel('Group') |
|
axes[2].set_ylabel('Frequency') |
|
|
|
|
|
sns.histplot(df['bias_score'], color='skyblue', kde=True, ax=axes[3]) |
|
axes[3].set_title('Distribution of Bias Scores in Responses') |
|
axes[3].set_xlabel('Bias Score') |
|
axes[3].set_ylabel('Frequency') |
|
|
|
|
|
plt.tight_layout() |
|
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
graph_path = os.path.join(OUTPUT_FOLDER, f"bias_analysis_4_plots_{times_stamp}.png") |
|
plt.savefig(graph_path) |
|
plt.close() |
|
graph_paths.append(graph_path) |
|
|
|
privileged_flat = pd.Series([item for sublist in df['privileged_groups'].dropna() for item in sublist]) |
|
unprivileged_flat = pd.Series([item for sublist in df['unprivileged_groups'].dropna() for item in sublist]) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7) |
|
ax.set_title('Frequency of Privileged Groups in Responses') |
|
ax.set_xlabel('Group') |
|
ax.set_ylabel('Frequency') |
|
plt.tight_layout() |
|
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Privileged_Groups_{times_stamp}.png') |
|
plt.savefig(graph_path) |
|
plt.close() |
|
graph_paths.append(graph_path) |
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7) |
|
ax.set_title('Frequency of Unprivileged Groups in Responses') |
|
ax.set_xlabel('Group') |
|
ax.set_ylabel('Frequency') |
|
plt.tight_layout() |
|
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Unprivileged_Groups_{times_stamp}.png') |
|
plt.savefig(graph_path) |
|
plt.close() |
|
graph_paths.append(graph_path) |
|
|
|
FairnessAudit.image_to_pdf(graph_paths, os.path.join(LOCAL_PATH, pdf_filename)) |
|
return pdf_filename |
|
finally: |
|
for graph_path in graph_paths: |
|
os.remove(graph_path) |
|
log.info("Images removed from the local path") |
|
|
|
def bias_type_bar_chart_visualize_workbench(df, label): |
|
pdf_filename = 'audit_report_pdf.pdf' |
|
df['privileged_groups'] = df['privileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x) |
|
df['unprivileged_groups'] = df['unprivileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x) |
|
|
|
pdf = PdfPages(os.path.join(LOCAL_PATH, pdf_filename)) |
|
|
|
|
|
html_content = f""" |
|
<div style='display: flex; justify-content: center; align-items: left; color:white; background-color: #963596; font-size:23px; font-family: sans-serif; border-radius: 10px; position: relative;'> |
|
<h2 style='margin: 0; style=font-family: sans-serif;'>INFOSYS RESPONSIBLE AI OFFICE</h2> |
|
<span style='position:absolute; right:1; font-size:15px; align-self: center; padding: 0 10px;'>{timestamp}</span> |
|
</div> |
|
""" |
|
html_content += f""" |
|
<body> |
|
<h3 style='color:#963596; text-align:left; font-size:19px; font-family: sans-serif;'>FAIRNESS REPORT</h3> |
|
<p style='font-family: sans-serif; font-size:16px;'>{SUCCESS_RATE_INFO}</p> |
|
</body> |
|
""" |
|
html_content += f""" |
|
<div style='width: 50%; font-family: sans-serif;'> |
|
<h3 class="header" style="color:#963596; font-size:19px;"><strong>DATA INFORMATION</strong></h3> |
|
<table> |
|
<tr><td style="font-size:16px; font-family: sans-serif;">Model Output column</td><td>:</td><td style="color: darkgray; font-size:16px; font-family: sans-serif;">{label}</td></tr> |
|
</table> |
|
</div> |
|
""" |
|
os.makedirs(OUTPUT_FOLDER, exist_ok=True) |
|
|
|
|
|
graph_paths = [] |
|
|
|
bias_type_counts = df['bias_type'].value_counts() |
|
|
|
|
|
fig, axes = plt.subplots(2, 2, figsize=(12, 8)) |
|
axes = axes.flatten() |
|
|
|
|
|
bias_type_counts.plot(kind='bar', color='skyblue', ax=axes[0]) |
|
axes[0].set_xlabel('Bias Type') |
|
axes[0].set_ylabel('Frequency') |
|
axes[0].set_title('Frequency of Bias Types in Responses') |
|
|
|
|
|
for i, bias_type in enumerate(df['bias_type'].unique()): |
|
privileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['privileged_groups'].dropna()]) |
|
privileged_flat = pd.Series([item for sublist in privileged_flat for item in sublist]) |
|
if not privileged_flat.empty: |
|
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[1]) |
|
axes[1].set_title(f'Frequency of Privileged Groups for {bias_type}') |
|
axes[1].set_xlabel('Group') |
|
axes[1].set_ylabel('Frequency') |
|
|
|
|
|
for i, bias_type in enumerate(df['bias_type'].unique()): |
|
unprivileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['unprivileged_groups'].dropna()]) |
|
unprivileged_flat = pd.Series([item for sublist in unprivileged_flat for item in sublist]) |
|
if not unprivileged_flat.empty: |
|
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[2]) |
|
axes[2].set_title(f'Frequency of Unprivileged Groups for {bias_type}') |
|
axes[2].set_xlabel('Group') |
|
axes[2].set_ylabel('Frequency') |
|
|
|
|
|
sns.histplot(df['bias_score'], color='skyblue', kde=True, ax=axes[3]) |
|
axes[3].set_title('Distribution of Bias Scores in Responses') |
|
axes[3].set_xlabel('Bias Score') |
|
axes[3].set_ylabel('Frequency') |
|
|
|
|
|
plt.tight_layout() |
|
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
graph_path = os.path.join(OUTPUT_FOLDER, f"bias_analysis_4_plots_{times_stamp}.png") |
|
plt.savefig(graph_path) |
|
plt.close() |
|
graph_paths.append(graph_path) |
|
|
|
with open(graph_path, "rb") as image_file: |
|
image_base64 = base64.b64encode(image_file.read()).decode('utf-8') |
|
html_content += f'<img src="data:image/png;base64,{image_base64}" alt="Bias Analysis 4 Plots">' |
|
|
|
|
|
privileged_flat = pd.Series([item for sublist in df['privileged_groups'].dropna() for item in sublist]) |
|
unprivileged_flat = pd.Series([item for sublist in df['unprivileged_groups'].dropna() for item in sublist]) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7) |
|
ax.set_title('Frequency of Privileged Groups in Responses') |
|
ax.set_xlabel('Group') |
|
ax.set_ylabel('Frequency') |
|
pdf.savefig(fig) |
|
plt.tight_layout() |
|
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Privileged_Groups_{times_stamp}.png') |
|
plt.savefig(graph_path) |
|
plt.close() |
|
graph_paths.append(graph_path) |
|
|
|
with open(graph_path, "rb") as image_file: |
|
image_base64 = base64.b64encode(image_file.read()).decode('utf-8') |
|
html_content += f'<img src="data:image/png;base64,{image_base64}" alt="Frequency of Privileged Groups">' |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7) |
|
ax.set_title('Frequency of Unprivileged Groups in Responses') |
|
ax.set_xlabel('Group') |
|
ax.set_ylabel('Frequency') |
|
pdf.savefig(fig) |
|
plt.tight_layout() |
|
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Unprivileged_Groups_{times_stamp}.png') |
|
plt.savefig(graph_path) |
|
plt.close() |
|
graph_paths.append(graph_path) |
|
|
|
with open(graph_path, "rb") as image_file: |
|
image_base64 = base64.b64encode(image_file.read()).decode('utf-8') |
|
html_content += f'<img src="data:image/png;base64,{image_base64}" alt="Frequency of Unprivileged Groups">' |
|
|
|
pdf.close() |
|
|
|
|
|
html_file_path = os.path.join(OUTPUT_FOLDER, 'report.html') |
|
|
|
with open(html_file_path, "w", encoding="utf-8") as html_file: |
|
html_file.write(html_content) |
|
|
|
with open(html_file_path, "r", encoding="utf-8") as html_file: |
|
html_data = html_file.read() |
|
|
|
|
|
|
|
return html_data |
|
|
|
|
|
|
|
|
|
def audit(self,payload): |
|
start_time=time.time() |
|
label=payload['label'] |
|
file=payload['file'] |
|
extension = FairnessAudit.get_extension(file.filename) |
|
data = FairnessAudit.get_dataframe(extension,file.file) |
|
inputs=data[label].tolist() |
|
|
|
inputs=[input_text.replace('\n','').replace('\t','').replace('\r','').strip() for input_text in inputs] |
|
primary_template=PRIMARY_TEMPLATE |
|
primary_template=primary_template.replace('\n','').replace('\t','').replace('\r','').strip() |
|
prompt=primary_template.format(bias_json_placeholder=json.dumps(bias_types),input_text="{input_text}") |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: |
|
results=list(executor.map(self.call_gpt,[prompt]*len(inputs),inputs)) |
|
data['response']=results |
|
data['bias_type']=data['response'].apply(lambda x: x[0]['bias_type'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['bias_score']=data['response'].apply(lambda x: x[0]['bias_score'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['privileged_groups']=data['response'].apply(lambda x: x[0]['privileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['unprivileged_groups']=data['response'].apply(lambda x: x[0]['unprivileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['bias_indicator']=data['response'].apply(lambda x: x[0]['bias_indicator'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
|
|
data=data.replace('NA', pd.NA) |
|
csv_name='bias_audit_report_'+str(uuid.uuid4())+'.csv' |
|
data.to_csv(os.path.join(LOCAL_PATH,csv_name)) |
|
pdf_filename=FairnessAudit.bias_type_bar_chart_visualize(data) |
|
response={'audit_report_csv':csv_name,'audit_report_pdf':pdf_filename} |
|
end_time=time.time() |
|
total_time=end_time-start_time |
|
log.info("Time taken for the audit: "+str(total_time)) |
|
return {'response':response,'time_taken':total_time} |
|
|
|
def workbench_audit(self,payload:dict): |
|
try: |
|
start_time=time.time() |
|
if payload['Batch_id'] is None or '': |
|
log.error("Batch Id id missing") |
|
batchId = payload['Batch_id'] |
|
self.batch.update(batch_id=batchId, value={"Status": "In-progress"}) |
|
tenet_id = self.tenet.find(tenet_name='Fairness') |
|
batch_details = self.batch.find(batch_id=batchId, tenet_id=tenet_id) |
|
datasetId = batch_details['DataId'] |
|
dataset_details = self.dataset.find(Dataset_Id=datasetId) |
|
dataset_attribute_ids = self.dataAttributes.find(dataset_attributes=[ |
|
'label']) |
|
log.info("Dataset Attribute Ids:"+str(dataset_attribute_ids)) |
|
dataset_attribute_values = self.dataAttributeValues.find( |
|
dataset_id=datasetId, dataset_attribute_ids=dataset_attribute_ids, batch_id=batchId) |
|
|
|
log.info("Dataset Attribute Values:"+ str(dataset_attribute_values)) |
|
fileId = dataset_details["SampleData"] |
|
|
|
label = dataset_attribute_values[0] |
|
content=self.fileStore.read_file(fileId) |
|
if content is None: |
|
raise HTTPException(status_code=500, detail="No content received from the POST request") |
|
content=self.fileStore.read_file(fileId) |
|
if content is None: |
|
raise HTTPException(status_code=500, detail="No content received from the POST request") |
|
|
|
data = pandas.read_csv(BytesIO(content['data'])) |
|
inputs=data[label].tolist() |
|
inputs=[input_text.replace('\n','').replace('\t','').replace('\r','').strip() for input_text in inputs] |
|
primary_template=PRIMARY_TEMPLATE |
|
primary_template=primary_template.replace('\n','').replace('\t','').replace('\r','').strip() |
|
prompt=primary_template.format(bias_json_placeholder=json.dumps(bias_types),input_text="{input_text}") |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: |
|
results=list(executor.map(self.call_gpt,[prompt]*len(inputs),inputs)) |
|
data['response']=results |
|
data['bias_type']=data['response'].apply(lambda x: x[0]['bias_type'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['bias_score']=data['response'].apply(lambda x: x[0]['bias_score'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['privileged_groups']=data['response'].apply(lambda x: x[0]['privileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['unprivileged_groups']=data['response'].apply(lambda x: x[0]['unprivileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
data['bias_indicator']=data['response'].apply(lambda x: x[0]['bias_indicator'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA')) |
|
|
|
data=data.replace('NA', pd.NA) |
|
csv_name='bias_audit_report_'+str(uuid.uuid4())+'.csv' |
|
data.to_csv(os.path.join(LOCAL_PATH,csv_name)) |
|
html_data=FairnessAudit.bias_type_bar_chart_visualize_workbench(data,label) |
|
|
|
tenet_id = self.tenet.find(tenet_name='Fairness') |
|
html_containerName = os.getenv('HTML_CONTAINER_NAME') |
|
htmlFileId = self.fileStore.save_file(file=BytesIO(html_data.encode( |
|
'utf-8')), filename='fairness_successrate.html', contentType='text/html', tenet='Fairness', container_name=html_containerName) |
|
log.info("HtmlFileId:"+ htmlFileId) |
|
|
|
HtmlId = time.time() |
|
doc = { |
|
'HtmlId': HtmlId, |
|
'BatchId': batchId, |
|
'TenetId': tenet_id, |
|
'ReportName': 'fairness_successrate.html', |
|
'HtmlFileId': htmlFileId, |
|
'CreatedDateTime': datetime.datetime.now(), |
|
} |
|
Html.create(doc) |
|
|
|
url = os.getenv("REPORT_URL") |
|
payload = {"batchId": batchId} |
|
response = requests.request( |
|
"POST", url, data=payload, verify=False).json() |
|
|
|
report_id = self.report.find(batch_id=batchId) |
|
print(report_id) |
|
reportId = report_id['ReportFileId'] |
|
reportName=report_id['ReportName'] |
|
content = self.fileStore.read_file(reportId,os.getenv("PDF_CONTAINER_NAME")) |
|
pdf_name=content['name']+"."+content['extension'] |
|
|
|
with open(os.path.join(LOCAL_PATH,csv_name), 'rb') as f: |
|
csv_file = f.read() |
|
|
|
|
|
zip_buffer=io.BytesIO() |
|
with zipfile.ZipFile(zip_buffer,'w') as zipf: |
|
zipf.writestr(csv_name,csv_file) |
|
zipf.writestr(reportName,content['data']) |
|
|
|
zip_buffer.seek(0) |
|
zip_file_bytes=zip_buffer.getvalue() |
|
zip_file_name="audit_report.zip" |
|
zip_fileid=self.fileStore.save_file(file=zip_file_bytes, filename=zip_file_name, contentType="zip", tenet='Fairness', container_name=ZIP_CONTAINER_NAME) |
|
response={'audit_report_id':zip_fileid} |
|
os.remove(os.path.join(LOCAL_PATH,csv_name)) |
|
|
|
report_document={"ReportId":time.time(),"BatchId":batchId,"ReportFileId":zip_fileid,"TenetId":tenet_id,"ReportName":zip_file_name,"ContentType":"zip","CreatedDateTime":datetime.datetime.now()} |
|
generated=Report.create(report_document) |
|
if not generated: |
|
raise HTTPException(status_code=500, detail="Report Metadata could not be inserted into DB") |
|
updated=self.batch.update(batch_id=batchId, value={"Status": "Completed"}) |
|
if not updated: |
|
raise HTTPException(status_code=500, detail="Batch Status could not be updated in DB") |
|
end_time=time.time() |
|
total_time=end_time-start_time |
|
log.info("Time taken for the audit: "+str(total_time)) |
|
return {'response':response,'time_taken':total_time} |
|
except Exception as e: |
|
self.batch.update(batch_id=batchId, value={"Status": "Failed"}) |
|
raise e |
|
|
|
def download_file(filename): |
|
if os.path.exists(os.path.join(LOCAL_PATH,filename)): |
|
return os.path.join(LOCAL_PATH,filename) |
|
else: |
|
raise HTTPException(status_code=404, detail="File not found") |
|
|
|
|
|
|