File size: 34,894 Bytes
38d6a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
"""
Copyright 2024-2025 Infosys Ltd.”
Use of this source code is governed by MIT license that can be found in the LICENSE file or at
MIT license https://opensource.org/licenses/MIT
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import datetime
from io import BytesIO
from fastapi import HTTPException
import numpy as np
import pandas
import openai
from openai import AzureOpenAI
import json
import time
import base64
# from tenacity import retry, wait_random_exponential, stop_after_attempt
import concurrent.futures
import openai
import backoff
import requests
from fairness.constants.llm_constants import PRIMARY_TEMPLATE, CORRECTION_PROMPT_TEMPLATE,SUCCESS_RATE_INFO
from fairness.dao.WorkBench.Tenet import Tenet
from fairness.dao.WorkBench.Batch import Batch
from fairness.dao.WorkBench.Data import Dataset,DataAttributes,DataAttributeValues
from fairness.dao.databaseconnection import DataBase
from fairness.dao.WorkBench.FileStoreDb import FileStoreReportDb
from fairness.dao.WorkBench.report import Report
from fairness.dao.WorkBench.html import Html
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from fpdf import FPDF
from PIL import Image
import zipfile
import io
import logging
import seaborn as sns
import uuid
import os
import datetime
import textwrap
timestamp = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
log=logging.getLogger(__name__)
log.setLevel(logging.INFO)
bias_types=[
{'bias_type': 'race', 'groups': ["white", "black", "asian", "hispanic", "other"]},
{'bias_type': 'gender', 'groups': ['male', 'female', "other"]},
{'bias_type': 'age', 'groups': ['infants', 'toddlers', 'preschoolers', 'children', 'teenagers', 'young_adults', 'adults', 'middle_aged', 'seniors']},
{'bias_type':'disability','groups':['physical_disabilities','sensory_disabilities','intellectual_disabilities','psychiatric_disabilities','learning_disabilities','chronic_health_conditions']},
]
LOCAL_PATH='../output/graphs/representation/'
OUTPUT_FOLDER = "../output/"
SUCCESS_RATE_LOCAL_PATH='../output/graphs/success_rates/'
ZIP_CONTAINER_NAME=os.getenv("ZIP_CONTAINER_NAME")
class FairnessAudit:
def __init__(self):
self.db = DataBase().db
self.fileStore = FileStoreReportDb()
self.batch = Batch()
self.tenet = Tenet()
self.dataset = Dataset()
self.dataAttributes = DataAttributes()
self.dataAttributeValues = DataAttributeValues()
self.report = Report()
self.client=AzureOpenAI(
api_version=os.getenv("OPENAI_API_VERSION"),
azure_endpoint=os.getenv("OPENAI_API_BASE"),
api_key=os.getenv("OPENAI_API_KEY")
)
def get_dataframe(extension,file):
if extension == "csv":
return pandas.read_csv(file)
elif extension=="parquet":
return pandas.read_parquet(file)
elif extension == "feather":
return pandas.read_feather(file)
elif extension == "json":
return pandas.read_json(file)
def get_extension(fileName: str):
if fileName.endswith(".csv"):
return "csv"
elif fileName.endswith(".feather"):
return "feather"
elif fileName.endswith(".parquet"):
return "parquet"
elif fileName.endswith(".json"):
return "json"
@backoff.on_exception(backoff.expo, exception=(openai.RateLimitError,json.decoder.JSONDecodeError), max_tries=10,backoff_log_level=logging.INFO)
def correct_respnse(self,response,errors,input_text):
#Create error string numberd list
try:
model_name=os.getenv("OPENAI_ENGINE_NAME")
log.info("Correction Required, Correcting the response")
errors=[f"{i+1}. {error}" for i,error in enumerate(errors)]
errors_string='\n'.join(errors)
correction_template=CORRECTION_PROMPT_TEMPLATE.format(bias_json_placeholder=json.dumps(bias_types),original_response=json.dumps(response),specific_errors=errors_string,input_text=input_text)
response=self.client.chat.completions.create(
model=model_name,
messages=[
{"role": "user", "content": correction_template},
],
temperature=0.7,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None,
)
generated_report = response.choices[0].message.content
json_string=generated_report[generated_report.find('['): generated_report.rfind(']')+1]
json_string=json_string.replace("\n","").replace("\t","").replace("\r","").strip()
json_response=json.loads(json_string)
return json_response
except json.decoder.JSONDecodeError as e:
response=self.check_response([],input_text,errors=["JSONDecodeError: "+str(e)])
return response['response']
def check_response(self,response,input_text,errors=[]):
log.info("Checking the response for any errors")
log.info(response)
required_fields={
'bias_type':str,
'bias_indicator':str,
'privileged_groups':list,
'unprivileged_groups':list,
'bias_score':int,
'explanation':str
}
#convert the response to lower case
response=[{k.lower():v for k,v in response_dict.items()} for response_dict in response]
if not errors:
for field,expected_type in required_fields.items():
for response_dict in response:
if response_dict['bias_type']!='NA':
if field not in response_dict:
errors.append(f"Response field {field} is missing")
elif not isinstance(response_dict[field],expected_type):
errors.append(f"Response field {field} is not of expected type {expected_type}")
#check if the bias_type is NA
for response_dict in response:
if response_dict["bias_type"]=='NA':
errors.append("Bias Type is NA. Cross check the input text if really no bias is present or if there is any issue in the analysis")
break
for response_dict in response:
if "bias_type" in response_dict:
bias_types_list=[bias['bias_type'] for bias in bias_types]
if response_dict["bias_type"] not in bias_types_list:
if response_dict["bias_type"]!="NA":
errors.append(f"Invalid bias_type {response_dict['bias_type']}. Must be one of the following: {bias_types_list}")
break
elif response_dict["bias_type"]!='NA': #If bias_type is NA, then privileged_groups and unprivileged_groups should be NA as well.
if "privileged_groups" in response_dict:
if response_dict["bias_type"]!="NA":
if not all([group in bias['groups'] for group in response_dict['privileged_groups'] for bias in bias_types]):
errors.append(f"Invalid privileged_groups {response_dict['privileged_groups']}. Must be one of the following: {bias_types[response_dict['bias_type']]['groups']} for the bias_type {response_dict['bias_type']}")
if "unprivileged_groups" in response_dict:
if not all([group in bias['groups'] for group in response_dict['unprivileged_groups'] for bias in bias_types]):
errors.append(f"Invalid unprivileged_groups {response_dict['unprivileged_groups']}. Must be one of the following: {bias_types['groups']} for the bias_type {response_dict['bias_type']}")
if "bias_indicator" in response_dict:
if response_dict['bias_indicator'] not in ['Low', 'Medium', 'High']:
errors.append(f"Invalid bias_indicator {response_dict['bias_indicator']}. Must be one of the following: Low, Medium, High")
if errors:
response=self.correct_respnse(response,errors,input_text)
return {
'valid': len(errors)==0,
'errors': errors,
'response': response,
}
backoff.on_exception(backoff.expo, exception=(openai.RateLimitError,json.decoder.JSONDecodeError), max_tries=10)
def call_gpt(self,prompt_template,text_message,flag=True):
log.info("Analyzing the input text: "+str(text_message))
model=os.getenv("OPENAI_ENGINE_NAME")
try:
response = self.client.chat.completions.create(
model=model,
# engine="gpt-4-turbo",
messages=[
{"role": "system", "content": prompt_template},
{"role": "user", "content": text_message}
],
temperature=0.7,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None,
)
generated_report = response.choices[0].message.content
json_string=generated_report[generated_report.find('['): generated_report.rfind(']')+1]
json_string=json_string.replace("\n","").replace("\t","").replace("\r","").strip()
json_response=json.loads(json_string)
# json_response[0]['bias_type']="Education"
errors=self.check_response(json_response,text_message)
if errors['valid']:
return json_response
else:
return errors['response']
except json.decoder.JSONDecodeError as e:
log.error("JSONDecodeError: "+str(e))
log.error(str(e.doc))
response=self.call_gpt(prompt_template,text_message)
return response
def image_to_pdf(image_paths, output_pdf, label=None):
pdf = FPDF()
pdf.add_page()
timestamp = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# Add title if provided
PURPLE = (150, 53, 150)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
# Header section
pdf.set_font('Helvetica', 'B', 17)
pdf.set_text_color(*WHITE)
pdf.set_fill_color(*PURPLE)
# Full-width header
pdf.cell(0, 11, 'INFOSYS RESPONSIBLE AI OFFICE',
align='C', fill=True, border=0)
#remove the gap between the header and the content
pdf.set_y(20)
# Add image
# Process each image
for index,image_path in enumerate(image_paths):
# Add a new page
if index!=0:
pdf.set_y(10)
pdf.add_page()
# Open image to get dimensions
img = Image.open(image_path)
img_width, img_height = img.size
# Calculate scaling to fit page width
page_width = pdf.w-20
page_height = pdf.h- pdf.get_y() - 20
# Calculate scaling factor
width_scale = page_width / img_width
height_scale = page_height / img_height
# Use the smaller scale to ensure image fits
scale_factor = min(width_scale, height_scale)
new_width = img_width * scale_factor
new_height = img_height * scale_factor
# Calculate positioning to center the image
x_position = (page_width - new_width) / 2
y_position = (page_height - new_height) / 2
# Add image to PDF
pdf.image(image_path, x=x_position, y=y_position, w=new_width, h=new_height)
# Save PDF
pdf.output(output_pdf)
print(f"PDF created: {output_pdf}")
def bias_type_bar_chart_visualize(df):
try:
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
pdf_filename = f"bias_analysis_{times_stamp}.pdf"
df['privileged_groups'] = df['privileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x)
df['unprivileged_groups'] = df['unprivileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x)
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
# Save graphs as images and embed them in the HTML content
graph_paths = []
bias_type_counts = df['bias_type'].value_counts()
# Create 2x2 grid for the first set of graphs with smaller figure size
fig, axes = plt.subplots(2, 2, figsize=(12, 8)) # Reduced size (12x8 inches)
axes = axes.flatten() # Flatten to make it easier to iterate
# Plot the bias type frequency
bias_type_counts.plot(kind='bar', color='skyblue', ax=axes[0])
axes[0].set_xlabel('Bias Type')
axes[0].set_ylabel('Frequency')
axes[0].set_title('Frequency of Bias Types in Responses')
# Plot privileged groups frequencies for each bias type
for i, bias_type in enumerate(df['bias_type'].unique()):
privileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['privileged_groups'].dropna()])
privileged_flat = pd.Series([item for sublist in privileged_flat for item in sublist])
if not privileged_flat.empty:
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[1])
axes[1].set_title(f'Frequency of Privileged Groups for {bias_type}')
axes[1].set_xlabel('Group')
axes[1].set_ylabel('Frequency')
# Plot unprivileged groups frequencies for each bias type
for i, bias_type in enumerate(df['bias_type'].unique()):
unprivileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['unprivileged_groups'].dropna()])
unprivileged_flat = pd.Series([item for sublist in unprivileged_flat for item in sublist])
if not unprivileged_flat.empty:
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[2])
axes[2].set_title(f'Frequency of Unprivileged Groups for {bias_type}')
axes[2].set_xlabel('Group')
axes[2].set_ylabel('Frequency')
# Bias Score Distribution
sns.histplot(df['bias_score'], color='skyblue', kde=True, ax=axes[3])
axes[3].set_title('Distribution of Bias Scores in Responses')
axes[3].set_xlabel('Bias Score')
axes[3].set_ylabel('Frequency')
# Save the figure with all 4 plots
plt.tight_layout()
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
graph_path = os.path.join(OUTPUT_FOLDER, f"bias_analysis_4_plots_{times_stamp}.png")
plt.savefig(graph_path)
plt.close()
graph_paths.append(graph_path)
# Privileged vs Unprivileged Groups Comparison (Bar Plot)
privileged_flat = pd.Series([item for sublist in df['privileged_groups'].dropna() for item in sublist])
unprivileged_flat = pd.Series([item for sublist in df['unprivileged_groups'].dropna() for item in sublist])
# Plot privileged groups
fig, ax = plt.subplots(figsize=(6, 4)) # Smaller figure size (6x4 inches)
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7)
ax.set_title('Frequency of Privileged Groups in Responses')
ax.set_xlabel('Group')
ax.set_ylabel('Frequency')
plt.tight_layout()
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Privileged_Groups_{times_stamp}.png')
plt.savefig(graph_path)
plt.close()
graph_paths.append(graph_path)
# Plot unprivileged groups
fig, ax = plt.subplots(figsize=(6, 4)) # Smaller figure size (6x4 inches)
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7)
ax.set_title('Frequency of Unprivileged Groups in Responses')
ax.set_xlabel('Group')
ax.set_ylabel('Frequency')
plt.tight_layout()
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Unprivileged_Groups_{times_stamp}.png')
plt.savefig(graph_path)
plt.close()
graph_paths.append(graph_path)
# Read the image file and encode it in base64
FairnessAudit.image_to_pdf(graph_paths, os.path.join(LOCAL_PATH, pdf_filename))
return pdf_filename
finally:
for graph_path in graph_paths:
os.remove(graph_path)
log.info("Images removed from the local path")
def bias_type_bar_chart_visualize_workbench(df, label):
pdf_filename = 'audit_report_pdf.pdf'
df['privileged_groups'] = df['privileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x)
df['unprivileged_groups'] = df['unprivileged_groups'].apply(lambda x: x.replace('[', '').replace(']', '').replace("'", '').split(', ') if isinstance(x, str) else x)
pdf = PdfPages(os.path.join(LOCAL_PATH, pdf_filename))
# Generate HTML content
html_content = f"""
<div style='display: flex; justify-content: center; align-items: left; color:white; background-color: #963596; font-size:23px; font-family: sans-serif; border-radius: 10px; position: relative;'>
<h2 style='margin: 0; style=font-family: sans-serif;'>INFOSYS RESPONSIBLE AI OFFICE</h2>
<span style='position:absolute; right:1; font-size:15px; align-self: center; padding: 0 10px;'>{timestamp}</span>
</div>
"""
html_content += f"""
<body>
<h3 style='color:#963596; text-align:left; font-size:19px; font-family: sans-serif;'>FAIRNESS REPORT</h3>
<p style='font-family: sans-serif; font-size:16px;'>{SUCCESS_RATE_INFO}</p>
</body>
"""
html_content += f"""
<div style='width: 50%; font-family: sans-serif;'>
<h3 class="header" style="color:#963596; font-size:19px;"><strong>DATA INFORMATION</strong></h3>
<table>
<tr><td style="font-size:16px; font-family: sans-serif;">Model Output column</td><td>:</td><td style="color: darkgray; font-size:16px; font-family: sans-serif;">{label}</td></tr>
</table>
</div>
"""
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
# Save graphs as images and embed them in the HTML content
graph_paths = []
bias_type_counts = df['bias_type'].value_counts()
# Create 2x2 grid for the first set of graphs with smaller figure size
fig, axes = plt.subplots(2, 2, figsize=(12, 8)) # Reduced size (12x8 inches)
axes = axes.flatten() # Flatten to make it easier to iterate
# Plot the bias type frequency
bias_type_counts.plot(kind='bar', color='skyblue', ax=axes[0])
axes[0].set_xlabel('Bias Type')
axes[0].set_ylabel('Frequency')
axes[0].set_title('Frequency of Bias Types in Responses')
# Plot privileged groups frequencies for each bias type
for i, bias_type in enumerate(df['bias_type'].unique()):
privileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['privileged_groups'].dropna()])
privileged_flat = pd.Series([item for sublist in privileged_flat for item in sublist])
if not privileged_flat.empty:
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[1])
axes[1].set_title(f'Frequency of Privileged Groups for {bias_type}')
axes[1].set_xlabel('Group')
axes[1].set_ylabel('Frequency')
# Plot unprivileged groups frequencies for each bias type
for i, bias_type in enumerate(df['bias_type'].unique()):
unprivileged_flat = pd.Series([item for item in df[df['bias_type'] == bias_type]['unprivileged_groups'].dropna()])
unprivileged_flat = pd.Series([item for sublist in unprivileged_flat for item in sublist])
if not unprivileged_flat.empty:
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=axes[2])
axes[2].set_title(f'Frequency of Unprivileged Groups for {bias_type}')
axes[2].set_xlabel('Group')
axes[2].set_ylabel('Frequency')
# Bias Score Distribution
sns.histplot(df['bias_score'], color='skyblue', kde=True, ax=axes[3])
axes[3].set_title('Distribution of Bias Scores in Responses')
axes[3].set_xlabel('Bias Score')
axes[3].set_ylabel('Frequency')
# Save the figure with all 4 plots
plt.tight_layout()
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
graph_path = os.path.join(OUTPUT_FOLDER, f"bias_analysis_4_plots_{times_stamp}.png")
plt.savefig(graph_path)
plt.close()
graph_paths.append(graph_path)
# Read the image file and encode it in base64
with open(graph_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
html_content += f'<img src="data:image/png;base64,{image_base64}" alt="Bias Analysis 4 Plots">'
# Privileged vs Unprivileged Groups Comparison (Bar Plot)
privileged_flat = pd.Series([item for sublist in df['privileged_groups'].dropna() for item in sublist])
unprivileged_flat = pd.Series([item for sublist in df['unprivileged_groups'].dropna() for item in sublist])
# Plot privileged groups
fig, ax = plt.subplots(figsize=(6, 4)) # Smaller figure size (6x4 inches)
privileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7)
ax.set_title('Frequency of Privileged Groups in Responses')
ax.set_xlabel('Group')
ax.set_ylabel('Frequency')
pdf.savefig(fig)
plt.tight_layout()
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Privileged_Groups_{times_stamp}.png')
plt.savefig(graph_path)
plt.close()
graph_paths.append(graph_path)
# Read the image file and encode it in base64
with open(graph_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
html_content += f'<img src="data:image/png;base64,{image_base64}" alt="Frequency of Privileged Groups">'
# Plot unprivileged groups
fig, ax = plt.subplots(figsize=(6, 4)) # Smaller figure size (6x4 inches)
unprivileged_flat.value_counts().plot(kind='bar', color='skyblue', ax=ax, alpha=0.7)
ax.set_title('Frequency of Unprivileged Groups in Responses')
ax.set_xlabel('Group')
ax.set_ylabel('Frequency')
pdf.savefig(fig)
plt.tight_layout()
graph_path = os.path.join(OUTPUT_FOLDER, f'Frequency_of_Unprivileged_Groups_{times_stamp}.png')
plt.savefig(graph_path)
plt.close()
graph_paths.append(graph_path)
# Read the image file and encode it in base64
with open(graph_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
html_content += f'<img src="data:image/png;base64,{image_base64}" alt="Frequency of Unprivileged Groups">'
pdf.close()
# Define the HTML file path
html_file_path = os.path.join(OUTPUT_FOLDER, 'report.html')
with open(html_file_path, "w", encoding="utf-8") as html_file:
html_file.write(html_content)
with open(html_file_path, "r", encoding="utf-8") as html_file:
html_data = html_file.read()
# pdfkit.from_string(html_data,"../output/"+pdf_filename)
return html_data
def audit(self,payload):
start_time=time.time()
label=payload['label']
file=payload['file']
extension = FairnessAudit.get_extension(file.filename)
data = FairnessAudit.get_dataframe(extension,file.file)
inputs=data[label].tolist()
#preprocess the inputs
inputs=[input_text.replace('\n','').replace('\t','').replace('\r','').strip() for input_text in inputs]
primary_template=PRIMARY_TEMPLATE
primary_template=primary_template.replace('\n','').replace('\t','').replace('\r','').strip()
prompt=primary_template.format(bias_json_placeholder=json.dumps(bias_types),input_text="{input_text}")
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
results=list(executor.map(self.call_gpt,[prompt]*len(inputs),inputs))
data['response']=results
data['bias_type']=data['response'].apply(lambda x: x[0]['bias_type'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['bias_score']=data['response'].apply(lambda x: x[0]['bias_score'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['privileged_groups']=data['response'].apply(lambda x: x[0]['privileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['unprivileged_groups']=data['response'].apply(lambda x: x[0]['unprivileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['bias_indicator']=data['response'].apply(lambda x: x[0]['bias_indicator'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data=data.replace('NA', pd.NA)
csv_name='bias_audit_report_'+str(uuid.uuid4())+'.csv'
data.to_csv(os.path.join(LOCAL_PATH,csv_name))
pdf_filename=FairnessAudit.bias_type_bar_chart_visualize(data)
response={'audit_report_csv':csv_name,'audit_report_pdf':pdf_filename}
end_time=time.time()
total_time=end_time-start_time
log.info("Time taken for the audit: "+str(total_time))
return {'response':response,'time_taken':total_time}
def workbench_audit(self,payload:dict):
try:
start_time=time.time()
if payload['Batch_id'] is None or '':
log.error("Batch Id id missing")
batchId = payload['Batch_id']
self.batch.update(batch_id=batchId, value={"Status": "In-progress"})
tenet_id = self.tenet.find(tenet_name='Fairness')
batch_details = self.batch.find(batch_id=batchId, tenet_id=tenet_id)
datasetId = batch_details['DataId']
dataset_details = self.dataset.find(Dataset_Id=datasetId)
dataset_attribute_ids = self.dataAttributes.find(dataset_attributes=[
'label'])
log.info("Dataset Attribute Ids:"+str(dataset_attribute_ids))
dataset_attribute_values = self.dataAttributeValues.find(
dataset_id=datasetId, dataset_attribute_ids=dataset_attribute_ids, batch_id=batchId)
log.info("Dataset Attribute Values:"+ str(dataset_attribute_values))
fileId = dataset_details["SampleData"]
label = dataset_attribute_values[0]
content=self.fileStore.read_file(fileId)
if content is None:
raise HTTPException(status_code=500, detail="No content received from the POST request")
content=self.fileStore.read_file(fileId)
if content is None:
raise HTTPException(status_code=500, detail="No content received from the POST request")
data = pandas.read_csv(BytesIO(content['data']))
inputs=data[label].tolist()
inputs=[input_text.replace('\n','').replace('\t','').replace('\r','').strip() for input_text in inputs]
primary_template=PRIMARY_TEMPLATE
primary_template=primary_template.replace('\n','').replace('\t','').replace('\r','').strip()
prompt=primary_template.format(bias_json_placeholder=json.dumps(bias_types),input_text="{input_text}")
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
results=list(executor.map(self.call_gpt,[prompt]*len(inputs),inputs))
data['response']=results
data['bias_type']=data['response'].apply(lambda x: x[0]['bias_type'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['bias_score']=data['response'].apply(lambda x: x[0]['bias_score'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['privileged_groups']=data['response'].apply(lambda x: x[0]['privileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['unprivileged_groups']=data['response'].apply(lambda x: x[0]['unprivileged_groups'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data['bias_indicator']=data['response'].apply(lambda x: x[0]['bias_indicator'] if isinstance(x, list) and len(x) > 0 else (x if isinstance(x, str) else 'NA'))
data=data.replace('NA', pd.NA)
csv_name='bias_audit_report_'+str(uuid.uuid4())+'.csv'
data.to_csv(os.path.join(LOCAL_PATH,csv_name))
html_data=FairnessAudit.bias_type_bar_chart_visualize_workbench(data,label)
tenet_id = self.tenet.find(tenet_name='Fairness')
html_containerName = os.getenv('HTML_CONTAINER_NAME')
htmlFileId = self.fileStore.save_file(file=BytesIO(html_data.encode(
'utf-8')), filename='fairness_successrate.html', contentType='text/html', tenet='Fairness', container_name=html_containerName)
log.info("HtmlFileId:"+ htmlFileId)
HtmlId = time.time()
doc = {
'HtmlId': HtmlId,
'BatchId': batchId,
'TenetId': tenet_id,
'ReportName': 'fairness_successrate.html',
'HtmlFileId': htmlFileId,
'CreatedDateTime': datetime.datetime.now(),
}
Html.create(doc)
url = os.getenv("REPORT_URL")
payload = {"batchId": batchId}
response = requests.request(
"POST", url, data=payload, verify=False).json()
report_id = self.report.find(batch_id=batchId)
print(report_id)
reportId = report_id['ReportFileId']
reportName=report_id['ReportName']
content = self.fileStore.read_file(reportId,os.getenv("PDF_CONTAINER_NAME"))
pdf_name=content['name']+"."+content['extension']
#load csv and pdf and convert to bytes
with open(os.path.join(LOCAL_PATH,csv_name), 'rb') as f:
csv_file = f.read()
# with open(os.path.join(OUTPUT_FOLDER,pdf_filename), 'rb') as f:
# pdf_file = f.read()
zip_buffer=io.BytesIO()
with zipfile.ZipFile(zip_buffer,'w') as zipf:
zipf.writestr(csv_name,csv_file)
zipf.writestr(reportName,content['data'])
zip_buffer.seek(0)
zip_file_bytes=zip_buffer.getvalue()
zip_file_name="audit_report.zip"
zip_fileid=self.fileStore.save_file(file=zip_file_bytes, filename=zip_file_name, contentType="zip", tenet='Fairness', container_name=ZIP_CONTAINER_NAME)
response={'audit_report_id':zip_fileid}
os.remove(os.path.join(LOCAL_PATH,csv_name))
# os.remove(os.path.join(OUTPUT_FOLDER,pdf_filename))
report_document={"ReportId":time.time(),"BatchId":batchId,"ReportFileId":zip_fileid,"TenetId":tenet_id,"ReportName":zip_file_name,"ContentType":"zip","CreatedDateTime":datetime.datetime.now()}
generated=Report.create(report_document)
if not generated:
raise HTTPException(status_code=500, detail="Report Metadata could not be inserted into DB")
updated=self.batch.update(batch_id=batchId, value={"Status": "Completed"})
if not updated:
raise HTTPException(status_code=500, detail="Batch Status could not be updated in DB")
end_time=time.time()
total_time=end_time-start_time
log.info("Time taken for the audit: "+str(total_time))
return {'response':response,'time_taken':total_time}
except Exception as e:
self.batch.update(batch_id=batchId, value={"Status": "Failed"})
raise e
def download_file(filename):
if os.path.exists(os.path.join(LOCAL_PATH,filename)):
return os.path.join(LOCAL_PATH,filename)
else:
raise HTTPException(status_code=404, detail="File not found")
|