File size: 1,930 Bytes
83a3714
0753d2e
 
83a3714
0753d2e
83a3714
 
 
 
 
 
0753d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
title: Chat With PDF Application
emoji: 😻
colorFrom: red
colorTo: yellow
sdk: streamlit
sdk_version: 1.41.1
app_file: app.py
pinned: false
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# Chat with PDF Application

**Chat with PDF** is an interactive Streamlit app that lets you upload PDFs, converts their content into embeddings using OpenAI, and enables question-answering via GPT-4.

## Features
- **PDF Upload:** Upload one or multiple PDFs.
- **Text Extraction & Chunking:** Extracts text from PDFs and splits it into manageable chunks.
- **Embedding Generation:** Converts text chunks into embeddings using OpenAI's `text-embedding-ada-002`.
- **Question Answering:** Ask questions about your documents and get context-aware answers generated by GPT-4.
- **Context Display:** View relevant sections from the PDF that support the generated answers.

## Installation

## Setup
1. Create and activate a virtual environment:
    ```bash
    python3 -m venv venv
    source venv/bin/activate 
    ``` 
# .\venv\Scripts\activate  # On Windows

2. Install requirements:
   ```bash
   pip install -r requirements.txt
   ```

3. Run the application:
   ```bash
   streamlit run app.py
   ```

4. **Configure API Key:**
   - Create a `.env` file in the root directory.
   - Add your OpenAI API key:
     ```
     OPENAI_API_KEY=your_openai_api_key_here
     ```

## Usage

1. **Run the application:**
   ```bash
   streamlit run app.py
   ```

2. **Interact:**
   - Upload PDF files.
   - Wait for processing and embedding generation.
   - Enter a question to get answers with relevant context excerpts from your PDFs.

## Notes
- The app meets core requirements: PDF uploading, text processing, embedding conversion, and Q&A.
- While context is shown, highlighting directly on the PDF is not implemented yet.
- Supports multiple PDF uploads and cross-document querying.