Spaces:
Sleeping
Sleeping
Commit
·
0753d2e
1
Parent(s):
83a3714
Initial
Browse files- .env +1 -0
- .gitignore +3 -0
- README.md +58 -4
- app.py +170 -0
- extracted_text.txt +551 -0
- requirements.txt +8 -0
- textScript.py +50 -0
- utils/embeddings_utils.py +48 -0
- utils/pdf_utils.py +35 -0
- utils/qa_utils.py +27 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY=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
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Chat_with_PDF_Application
|
2 |
+
venv
|
3 |
+
__pycache__
|
README.md
CHANGED
@@ -1,12 +1,66 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.41.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Chat With PDF Application
|
3 |
+
emoji: 😻
|
4 |
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.41.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
|
13 |
+
# Chat with PDF Application
|
14 |
+
|
15 |
+
**Chat with PDF** is an interactive Streamlit app that lets you upload PDFs, converts their content into embeddings using OpenAI, and enables question-answering via GPT-4.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
- **PDF Upload:** Upload one or multiple PDFs.
|
19 |
+
- **Text Extraction & Chunking:** Extracts text from PDFs and splits it into manageable chunks.
|
20 |
+
- **Embedding Generation:** Converts text chunks into embeddings using OpenAI's `text-embedding-ada-002`.
|
21 |
+
- **Question Answering:** Ask questions about your documents and get context-aware answers generated by GPT-4.
|
22 |
+
- **Context Display:** View relevant sections from the PDF that support the generated answers.
|
23 |
+
|
24 |
+
## Installation
|
25 |
+
|
26 |
+
## Setup
|
27 |
+
1. Create and activate a virtual environment:
|
28 |
+
```bash
|
29 |
+
python3 -m venv venv
|
30 |
+
source venv/bin/activate
|
31 |
+
```
|
32 |
+
# .\venv\Scripts\activate # On Windows
|
33 |
+
|
34 |
+
2. Install requirements:
|
35 |
+
```bash
|
36 |
+
pip install -r requirements.txt
|
37 |
+
```
|
38 |
+
|
39 |
+
3. Run the application:
|
40 |
+
```bash
|
41 |
+
streamlit run app.py
|
42 |
+
```
|
43 |
+
|
44 |
+
4. **Configure API Key:**
|
45 |
+
- Create a `.env` file in the root directory.
|
46 |
+
- Add your OpenAI API key:
|
47 |
+
```
|
48 |
+
OPENAI_API_KEY=your_openai_api_key_here
|
49 |
+
```
|
50 |
+
|
51 |
+
## Usage
|
52 |
+
|
53 |
+
1. **Run the application:**
|
54 |
+
```bash
|
55 |
+
streamlit run app.py
|
56 |
+
```
|
57 |
+
|
58 |
+
2. **Interact:**
|
59 |
+
- Upload PDF files.
|
60 |
+
- Wait for processing and embedding generation.
|
61 |
+
- Enter a question to get answers with relevant context excerpts from your PDFs.
|
62 |
+
|
63 |
+
## Notes
|
64 |
+
- The app meets core requirements: PDF uploading, text processing, embedding conversion, and Q&A.
|
65 |
+
- While context is shown, highlighting directly on the PDF is not implemented yet.
|
66 |
+
- Supports multiple PDF uploads and cross-document querying.
|
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from utils.pdf_utils import PDFProcessor
|
4 |
+
from utils.embeddings_utils import EmbeddingsManager
|
5 |
+
from utils.qa_utils import QASystem
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import openai
|
8 |
+
|
9 |
+
def initialize_session_state():
|
10 |
+
if 'pdf_processor' not in st.session_state:
|
11 |
+
st.session_state['pdf_processor'] = None
|
12 |
+
if 'embeddings_manager' not in st.session_state:
|
13 |
+
st.session_state['embeddings_manager'] = None
|
14 |
+
if 'qa_system' not in st.session_state:
|
15 |
+
st.session_state['qa_system'] = None
|
16 |
+
if 'processed_pdfs' not in st.session_state:
|
17 |
+
st.session_state['processed_pdfs'] = set()
|
18 |
+
if 'all_text_chunks' not in st.session_state:
|
19 |
+
st.session_state['all_text_chunks'] = []
|
20 |
+
|
21 |
+
def main():
|
22 |
+
load_dotenv()
|
23 |
+
st.set_page_config(page_title="AI-Powered PDF Assistant", layout="wide")
|
24 |
+
|
25 |
+
initialize_session_state()
|
26 |
+
|
27 |
+
# Header Section
|
28 |
+
st.markdown(
|
29 |
+
"""
|
30 |
+
<style>
|
31 |
+
.main-header {
|
32 |
+
font-size: 2.5rem;
|
33 |
+
color: #1F77B4;
|
34 |
+
text-align: center;
|
35 |
+
margin-bottom: 1rem;
|
36 |
+
}
|
37 |
+
.sub-header {
|
38 |
+
font-size: 1.25rem;
|
39 |
+
color: #555;
|
40 |
+
text-align: center;
|
41 |
+
margin-bottom: 2rem;
|
42 |
+
}
|
43 |
+
</style>
|
44 |
+
<div class="main-header">📘 AI-Powered PDF Assistant</div>
|
45 |
+
<div class="sub-header">Upload, Analyze, and Interact with Your Documents</div>
|
46 |
+
""",
|
47 |
+
unsafe_allow_html=True
|
48 |
+
)
|
49 |
+
|
50 |
+
# Navigation Menu
|
51 |
+
selected_page = st.sidebar.radio(
|
52 |
+
"Navigate", ["Upload PDFs", "Ask Questions", "About"]
|
53 |
+
)
|
54 |
+
|
55 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
56 |
+
if not api_key:
|
57 |
+
st.sidebar.error("OpenAI API key not found in .env file!")
|
58 |
+
return
|
59 |
+
|
60 |
+
openai.api_key = api_key
|
61 |
+
|
62 |
+
if not st.session_state['pdf_processor']:
|
63 |
+
st.session_state['pdf_processor'] = PDFProcessor()
|
64 |
+
if not st.session_state['embeddings_manager']:
|
65 |
+
st.session_state['embeddings_manager'] = EmbeddingsManager(api_key)
|
66 |
+
if not st.session_state['qa_system']:
|
67 |
+
st.session_state['qa_system'] = QASystem(api_key)
|
68 |
+
|
69 |
+
if selected_page == "Upload PDFs":
|
70 |
+
st.header("📤 Upload PDFs")
|
71 |
+
st.markdown(
|
72 |
+
"""<p style='font-size: 1.1rem;'>Drag and drop your PDF files below to extract and process content for analysis.</p>""",
|
73 |
+
unsafe_allow_html=True
|
74 |
+
)
|
75 |
+
|
76 |
+
uploaded_files = st.file_uploader(
|
77 |
+
"Upload PDF files", type=['pdf'], accept_multiple_files=True
|
78 |
+
)
|
79 |
+
|
80 |
+
if uploaded_files:
|
81 |
+
new_files = [f for f in uploaded_files if f.name not in st.session_state['processed_pdfs']]
|
82 |
+
if new_files:
|
83 |
+
with st.spinner("Processing PDFs..."):
|
84 |
+
for pdf_file in new_files:
|
85 |
+
try:
|
86 |
+
pages = st.session_state['pdf_processor'].extract_text(pdf_file)
|
87 |
+
for page_text in pages.values():
|
88 |
+
chunks = st.session_state['pdf_processor'].chunk_text(page_text)
|
89 |
+
st.session_state['all_text_chunks'].extend(chunks)
|
90 |
+
st.session_state['processed_pdfs'].add(pdf_file.name)
|
91 |
+
except Exception as e:
|
92 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
93 |
+
continue
|
94 |
+
|
95 |
+
with st.spinner("Generating embeddings..."):
|
96 |
+
try:
|
97 |
+
st.session_state['embeddings_manager'].generate_embeddings(
|
98 |
+
st.session_state['all_text_chunks']
|
99 |
+
)
|
100 |
+
st.success("✅ Documents processed successfully!")
|
101 |
+
except Exception as e:
|
102 |
+
st.error(f"Error generating embeddings: {str(e)}")
|
103 |
+
|
104 |
+
elif selected_page == "Ask Questions":
|
105 |
+
st.header("❓ Ask Questions")
|
106 |
+
st.markdown(
|
107 |
+
"""<p style='font-size: 1.1rem;'>Query your uploaded documents and get precise answers backed by AI-powered analysis.</p>""",
|
108 |
+
unsafe_allow_html=True
|
109 |
+
)
|
110 |
+
|
111 |
+
if st.session_state['all_text_chunks']:
|
112 |
+
question = st.text_input("Enter your question:")
|
113 |
+
|
114 |
+
if question:
|
115 |
+
try:
|
116 |
+
with st.spinner("Finding relevant information..."):
|
117 |
+
relevant_chunks = st.session_state['embeddings_manager'].find_relevant_chunks(
|
118 |
+
question, k=3
|
119 |
+
)
|
120 |
+
answer = st.session_state['qa_system'].generate_answer(
|
121 |
+
question, relevant_chunks
|
122 |
+
)
|
123 |
+
|
124 |
+
st.markdown("### 🤖 Answer")
|
125 |
+
st.write(answer)
|
126 |
+
|
127 |
+
with st.expander("🔍 View Source Context"):
|
128 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
129 |
+
st.markdown(f"**Context {i}:**")
|
130 |
+
st.write(chunk)
|
131 |
+
st.markdown("---")
|
132 |
+
except openai.error.RateLimitError:
|
133 |
+
st.error("Rate limit exceeded. Please try again later.")
|
134 |
+
except Exception as e:
|
135 |
+
st.error(f"Error: {str(e)}")
|
136 |
+
else:
|
137 |
+
st.warning("Please upload and process documents in the 'Upload PDFs' section first.")
|
138 |
+
|
139 |
+
elif selected_page == "About":
|
140 |
+
st.header("ℹ️ About This App")
|
141 |
+
st.markdown(
|
142 |
+
"""
|
143 |
+
<p style='font-size: 1.1rem;'>
|
144 |
+
<b>AI-Powered PDF Assistant</b> is a smart solution for extracting and querying information from PDF files. With powerful AI integrations,
|
145 |
+
this tool allows seamless document analysis and interaction.
|
146 |
+
</p>
|
147 |
+
|
148 |
+
<h3>🔑 Key Features</h3>
|
149 |
+
<ul>
|
150 |
+
<li>Upload and process multiple PDF files</li>
|
151 |
+
<li>Generate embeddings for precise content retrieval</li>
|
152 |
+
<li>Query documents and receive context-aware answers</li>
|
153 |
+
</ul>
|
154 |
+
|
155 |
+
<h3>🛠️ Technologies Used</h3>
|
156 |
+
<ul>
|
157 |
+
<li>Streamlit for interactive UI</li>
|
158 |
+
<li>OpenAI GPT API for Q&A</li>
|
159 |
+
<li>Custom PDF processing and embedding tools</li>
|
160 |
+
</ul>
|
161 |
+
|
162 |
+
<p style='text-align: center;'>
|
163 |
+
Built with ❤️ by [Your Name]
|
164 |
+
</p>
|
165 |
+
""",
|
166 |
+
unsafe_allow_html=True
|
167 |
+
)
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
main()
|
extracted_text.txt
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- File: /home/sk/Desktop/chat-with-pdf/app.py ---
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
from utils.pdf_utils import PDFProcessor
|
6 |
+
from utils.embeddings_utils import EmbeddingsManager
|
7 |
+
from utils.qa_utils import QASystem
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import openai
|
10 |
+
import time
|
11 |
+
|
12 |
+
def initialize_session_state():
|
13 |
+
if 'pdf_processor' not in st.session_state:
|
14 |
+
st.session_state['pdf_processor'] = None
|
15 |
+
if 'embeddings_manager' not in st.session_state:
|
16 |
+
st.session_state['embeddings_manager'] = None
|
17 |
+
if 'qa_system' not in st.session_state:
|
18 |
+
st.session_state['qa_system'] = None
|
19 |
+
if 'processed_pdfs' not in st.session_state:
|
20 |
+
st.session_state['processed_pdfs'] = set()
|
21 |
+
if 'all_text_chunks' not in st.session_state:
|
22 |
+
st.session_state['all_text_chunks'] = []
|
23 |
+
|
24 |
+
def main():
|
25 |
+
load_dotenv()
|
26 |
+
st.set_page_config(page_title="Chat with PDF", layout="wide")
|
27 |
+
st.title("📄💬 Chat with PDF")
|
28 |
+
|
29 |
+
initialize_session_state()
|
30 |
+
|
31 |
+
with st.sidebar:
|
32 |
+
st.header("🔍 How to Use")
|
33 |
+
st.markdown("""
|
34 |
+
1. Upload PDF document(s)
|
35 |
+
2. Ask questions about the content
|
36 |
+
3. View answers and relevant context
|
37 |
+
""")
|
38 |
+
if 'total_tokens_used' in st.session_state:
|
39 |
+
st.markdown("---")
|
40 |
+
st.markdown("### 📊 Usage Statistics")
|
41 |
+
st.markdown(f"Total tokens used: {st.session_state.get('total_tokens_used', 0)}")
|
42 |
+
|
43 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
44 |
+
if not api_key:
|
45 |
+
st.error("OpenAI API key not found in .env file!")
|
46 |
+
return
|
47 |
+
|
48 |
+
openai.api_key = api_key
|
49 |
+
|
50 |
+
if not st.session_state['pdf_processor']:
|
51 |
+
st.session_state['pdf_processor'] = PDFProcessor()
|
52 |
+
if not st.session_state['embeddings_manager']:
|
53 |
+
st.session_state['embeddings_manager'] = EmbeddingsManager(api_key)
|
54 |
+
if not st.session_state['qa_system']:
|
55 |
+
st.session_state['qa_system'] = QASystem(api_key)
|
56 |
+
|
57 |
+
st.subheader("📤 Upload PDFs")
|
58 |
+
uploaded_files = st.file_uploader(
|
59 |
+
"Upload PDF documents",
|
60 |
+
type=['pdf'],
|
61 |
+
accept_multiple_files=True
|
62 |
+
)
|
63 |
+
|
64 |
+
if uploaded_files:
|
65 |
+
new_files = [f for f in uploaded_files if f.name not in st.session_state['processed_pdfs']]
|
66 |
+
if new_files:
|
67 |
+
with st.spinner("Processing PDFs..."):
|
68 |
+
for pdf_file in new_files:
|
69 |
+
try:
|
70 |
+
pages = st.session_state['pdf_processor'].extract_text(pdf_file)
|
71 |
+
for page_text in pages.values():
|
72 |
+
chunks = st.session_state['pdf_processor'].chunk_text(page_text)
|
73 |
+
st.session_state['all_text_chunks'].extend(chunks)
|
74 |
+
st.session_state['processed_pdfs'].add(pdf_file.name)
|
75 |
+
except Exception as e:
|
76 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
77 |
+
continue
|
78 |
+
|
79 |
+
with st.spinner("Generating embeddings..."):
|
80 |
+
try:
|
81 |
+
st.session_state['embeddings_manager'].generate_embeddings(
|
82 |
+
st.session_state['all_text_chunks']
|
83 |
+
)
|
84 |
+
st.success("✅ Documents processed!")
|
85 |
+
except Exception as e:
|
86 |
+
st.error(f"Error generating embeddings: {str(e)}")
|
87 |
+
return
|
88 |
+
|
89 |
+
if st.session_state['all_text_chunks']:
|
90 |
+
st.write("---")
|
91 |
+
st.subheader("❓ Ask Questions About Your Documents")
|
92 |
+
question = st.text_input("Enter your question:")
|
93 |
+
if question:
|
94 |
+
try:
|
95 |
+
with st.spinner("Searching for relevant information..."):
|
96 |
+
relevant_chunks = st.session_state['embeddings_manager'].find_relevant_chunks(
|
97 |
+
question,
|
98 |
+
k=3
|
99 |
+
)
|
100 |
+
answer = st.session_state['qa_system'].generate_answer(
|
101 |
+
question,
|
102 |
+
relevant_chunks
|
103 |
+
)
|
104 |
+
st.markdown("### 🤖 Answer:")
|
105 |
+
st.write(answer)
|
106 |
+
with st.expander("🔍 View Source Context"):
|
107 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
108 |
+
st.markdown(f"**Context {i}:**")
|
109 |
+
st.write(chunk)
|
110 |
+
st.markdown("---")
|
111 |
+
except openai.error.RateLimitError:
|
112 |
+
st.error("Rate limit exceeded. Please try again later.")
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"Error: {str(e)}")
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|
118 |
+
|
119 |
+
|
120 |
+
--- File: /home/sk/Desktop/chat-with-pdf/requirements.txt ---
|
121 |
+
|
122 |
+
streamlit
|
123 |
+
PyPDF2
|
124 |
+
openai
|
125 |
+
python-dotenv
|
126 |
+
faiss-cpu
|
127 |
+
numpy
|
128 |
+
pdf2image
|
129 |
+
Pillow
|
130 |
+
|
131 |
+
--- File: /home/sk/Desktop/chat-with-pdf/.env ---
|
132 |
+
|
133 |
+
OPENAI_API_KEY=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
|
134 |
+
|
135 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/app.py ---
|
136 |
+
|
137 |
+
import streamlit as st
|
138 |
+
import os
|
139 |
+
from utils.pdf_utils import PDFProcessor
|
140 |
+
from utils.embeddings_utils import EmbeddingsManager
|
141 |
+
from utils.qa_utils import QASystem
|
142 |
+
from dotenv import load_dotenv
|
143 |
+
import openai
|
144 |
+
import time
|
145 |
+
|
146 |
+
def initialize_session_state():
|
147 |
+
if 'pdf_processor' not in st.session_state:
|
148 |
+
st.session_state['pdf_processor'] = None
|
149 |
+
if 'embeddings_manager' not in st.session_state:
|
150 |
+
st.session_state['embeddings_manager'] = None
|
151 |
+
if 'qa_system' not in st.session_state:
|
152 |
+
st.session_state['qa_system'] = None
|
153 |
+
if 'processed_pdfs' not in st.session_state:
|
154 |
+
st.session_state['processed_pdfs'] = set()
|
155 |
+
if 'all_text_chunks' not in st.session_state:
|
156 |
+
st.session_state['all_text_chunks'] = []
|
157 |
+
|
158 |
+
def main():
|
159 |
+
load_dotenv()
|
160 |
+
st.set_page_config(page_title="Chat with PDF", layout="wide")
|
161 |
+
st.title("📄💬 Chat with PDF")
|
162 |
+
|
163 |
+
initialize_session_state()
|
164 |
+
|
165 |
+
with st.sidebar:
|
166 |
+
st.header("🔍 How to Use")
|
167 |
+
st.markdown("""
|
168 |
+
1. Upload PDF document(s)
|
169 |
+
2. Ask questions about the content
|
170 |
+
3. View answers and relevant context
|
171 |
+
""")
|
172 |
+
if 'total_tokens_used' in st.session_state:
|
173 |
+
st.markdown("---")
|
174 |
+
st.markdown("### 📊 Usage Statistics")
|
175 |
+
st.markdown(f"Total tokens used: {st.session_state.get('total_tokens_used', 0)}")
|
176 |
+
|
177 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
178 |
+
if not api_key:
|
179 |
+
st.error("OpenAI API key not found in .env file!")
|
180 |
+
return
|
181 |
+
|
182 |
+
openai.api_key = api_key
|
183 |
+
|
184 |
+
if not st.session_state['pdf_processor']:
|
185 |
+
st.session_state['pdf_processor'] = PDFProcessor()
|
186 |
+
if not st.session_state['embeddings_manager']:
|
187 |
+
st.session_state['embeddings_manager'] = EmbeddingsManager(api_key)
|
188 |
+
if not st.session_state['qa_system']:
|
189 |
+
st.session_state['qa_system'] = QASystem(api_key)
|
190 |
+
|
191 |
+
st.subheader("📤 Upload PDFs")
|
192 |
+
uploaded_files = st.file_uploader(
|
193 |
+
"Upload PDF documents",
|
194 |
+
type=['pdf'],
|
195 |
+
accept_multiple_files=True
|
196 |
+
)
|
197 |
+
|
198 |
+
if uploaded_files:
|
199 |
+
new_files = [f for f in uploaded_files if f.name not in st.session_state['processed_pdfs']]
|
200 |
+
if new_files:
|
201 |
+
with st.spinner("Processing PDFs..."):
|
202 |
+
for pdf_file in new_files:
|
203 |
+
try:
|
204 |
+
pages = st.session_state['pdf_processor'].extract_text(pdf_file)
|
205 |
+
for page_text in pages.values():
|
206 |
+
chunks = st.session_state['pdf_processor'].chunk_text(page_text)
|
207 |
+
st.session_state['all_text_chunks'].extend(chunks)
|
208 |
+
st.session_state['processed_pdfs'].add(pdf_file.name)
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
211 |
+
continue
|
212 |
+
|
213 |
+
with st.spinner("Generating embeddings..."):
|
214 |
+
try:
|
215 |
+
st.session_state['embeddings_manager'].generate_embeddings(
|
216 |
+
st.session_state['all_text_chunks']
|
217 |
+
)
|
218 |
+
st.success("✅ Documents processed!")
|
219 |
+
except Exception as e:
|
220 |
+
st.error(f"Error generating embeddings: {str(e)}")
|
221 |
+
return
|
222 |
+
|
223 |
+
if st.session_state['all_text_chunks']:
|
224 |
+
st.write("---")
|
225 |
+
st.subheader("❓ Ask Questions About Your Documents")
|
226 |
+
question = st.text_input("Enter your question:")
|
227 |
+
if question:
|
228 |
+
try:
|
229 |
+
with st.spinner("Searching for relevant information..."):
|
230 |
+
relevant_chunks = st.session_state['embeddings_manager'].find_relevant_chunks(
|
231 |
+
question,
|
232 |
+
k=3
|
233 |
+
)
|
234 |
+
answer = st.session_state['qa_system'].generate_answer(
|
235 |
+
question,
|
236 |
+
relevant_chunks
|
237 |
+
)
|
238 |
+
st.markdown("### 🤖 Answer:")
|
239 |
+
st.write(answer)
|
240 |
+
with st.expander("🔍 View Source Context"):
|
241 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
242 |
+
st.markdown(f"**Context {i}:**")
|
243 |
+
st.write(chunk)
|
244 |
+
st.markdown("---")
|
245 |
+
except openai.error.RateLimitError:
|
246 |
+
st.error("Rate limit exceeded. Please try again later.")
|
247 |
+
except Exception as e:
|
248 |
+
st.error(f"Error: {str(e)}")
|
249 |
+
|
250 |
+
if __name__ == "__main__":
|
251 |
+
main()
|
252 |
+
|
253 |
+
|
254 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/requirements.txt ---
|
255 |
+
|
256 |
+
streamlit
|
257 |
+
PyPDF2
|
258 |
+
openai
|
259 |
+
python-dotenv
|
260 |
+
faiss-cpu
|
261 |
+
numpy
|
262 |
+
pdf2image
|
263 |
+
Pillow
|
264 |
+
|
265 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/.gitattributes ---
|
266 |
+
|
267 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
268 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
269 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
270 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
271 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
272 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
273 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
274 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
275 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
276 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
277 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
278 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
279 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
280 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
281 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
282 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
283 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
284 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
285 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
286 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
287 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
288 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
289 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
290 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
291 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
292 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
293 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
294 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
295 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
296 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
297 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
298 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
299 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
300 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
301 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
302 |
+
|
303 |
+
|
304 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/.env ---
|
305 |
+
|
306 |
+
OPENAI_API_KEY=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
|
307 |
+
|
308 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/utils/qa_utils.py ---
|
309 |
+
|
310 |
+
import openai
|
311 |
+
from typing import List
|
312 |
+
|
313 |
+
class QASystem:
|
314 |
+
def __init__(self, api_key: str):
|
315 |
+
openai.api_key = api_key
|
316 |
+
|
317 |
+
def generate_answer(self, question: str, context: List[str]) -> str:
|
318 |
+
prompt = f"""Based on the context provided below, answer the question.
|
319 |
+
If the answer is not in the context, respond with "The answer is not in the provided context."
|
320 |
+
|
321 |
+
Context:
|
322 |
+
{' '.join(context)}
|
323 |
+
|
324 |
+
Question: {question}
|
325 |
+
"""
|
326 |
+
|
327 |
+
response = openai.chat.completions.create( # Updated line
|
328 |
+
model="gpt-4",
|
329 |
+
messages=[
|
330 |
+
{"role": "system", "content": "You are an assistant answering questions based on the provided context."},
|
331 |
+
{"role": "user", "content": prompt}
|
332 |
+
],
|
333 |
+
temperature=0,
|
334 |
+
max_tokens=500
|
335 |
+
)
|
336 |
+
return response.choices[0].message.content
|
337 |
+
|
338 |
+
|
339 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/utils/embeddings_utils.py ---
|
340 |
+
|
341 |
+
import openai
|
342 |
+
import numpy as np
|
343 |
+
import faiss
|
344 |
+
from typing import List
|
345 |
+
|
346 |
+
class EmbeddingsManager:
|
347 |
+
def __init__(self, api_key: str):
|
348 |
+
self.api_key = api_key
|
349 |
+
self.index = None
|
350 |
+
self.chunks = []
|
351 |
+
|
352 |
+
def generate_embeddings(self, text_chunks: List[str]):
|
353 |
+
"""Generate embeddings for text chunks using OpenAI API."""
|
354 |
+
batch_size = 10
|
355 |
+
embeddings = []
|
356 |
+
|
357 |
+
for i in range(0, len(text_chunks), batch_size):
|
358 |
+
batch = text_chunks[i:i + batch_size]
|
359 |
+
response = openai.embeddings.create(
|
360 |
+
input=batch,
|
361 |
+
model="text-embedding-ada-002"
|
362 |
+
)
|
363 |
+
# Access the embeddings using attributes
|
364 |
+
batch_embeddings = [item.embedding for item in response.data]
|
365 |
+
embeddings.extend(batch_embeddings)
|
366 |
+
|
367 |
+
# Create FAISS index
|
368 |
+
dimension = len(embeddings[0])
|
369 |
+
self.index = faiss.IndexFlatL2(dimension)
|
370 |
+
embeddings_array = np.array(embeddings).astype('float32')
|
371 |
+
self.index.add(embeddings_array)
|
372 |
+
self.chunks = text_chunks
|
373 |
+
|
374 |
+
def find_relevant_chunks(self, query: str, k: int = 3) -> List[str]:
|
375 |
+
"""Find most relevant text chunks for a given query."""
|
376 |
+
response = openai.embeddings.create(
|
377 |
+
input=[query],
|
378 |
+
model="text-embedding-ada-002"
|
379 |
+
)
|
380 |
+
# Access the query embedding using attributes
|
381 |
+
query_embedding = response.data[0].embedding
|
382 |
+
|
383 |
+
D, I = self.index.search(
|
384 |
+
np.array([query_embedding]).astype('float32'),
|
385 |
+
k
|
386 |
+
)
|
387 |
+
|
388 |
+
return [self.chunks[i] for i in I[0] if i != -1]
|
389 |
+
|
390 |
+
|
391 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/utils/pdf_utils.py ---
|
392 |
+
|
393 |
+
import PyPDF2
|
394 |
+
from typing import List, Dict
|
395 |
+
|
396 |
+
class PDFProcessor:
|
397 |
+
def __init__(self):
|
398 |
+
self.pages = {}
|
399 |
+
|
400 |
+
def extract_text(self, pdf_file) -> Dict[int, str]:
|
401 |
+
"""Extract text from PDF and return a dictionary of page numbers and text."""
|
402 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
403 |
+
for page_num in range(len(pdf_reader.pages)):
|
404 |
+
text = pdf_reader.pages[page_num].extract_text()
|
405 |
+
self.pages[page_num] = text
|
406 |
+
return self.pages
|
407 |
+
|
408 |
+
def chunk_text(self, text: str, chunk_size: int = 1000) -> List[str]:
|
409 |
+
"""Split text into chunks of specified size."""
|
410 |
+
words = text.split()
|
411 |
+
chunks = []
|
412 |
+
current_chunk = []
|
413 |
+
current_size = 0
|
414 |
+
|
415 |
+
for word in words:
|
416 |
+
current_size += len(word) + 1 # +1 for space
|
417 |
+
if current_size > chunk_size:
|
418 |
+
chunks.append(' '.join(current_chunk))
|
419 |
+
current_chunk = [word]
|
420 |
+
current_size = len(word)
|
421 |
+
else:
|
422 |
+
current_chunk.append(word)
|
423 |
+
|
424 |
+
if current_chunk:
|
425 |
+
chunks.append(' '.join(current_chunk))
|
426 |
+
|
427 |
+
return chunks
|
428 |
+
|
429 |
+
|
430 |
+
--- File: /home/sk/Desktop/chat-with-pdf/utils/qa_utils.py ---
|
431 |
+
|
432 |
+
import openai
|
433 |
+
from typing import List
|
434 |
+
|
435 |
+
class QASystem:
|
436 |
+
def __init__(self, api_key: str):
|
437 |
+
openai.api_key = api_key
|
438 |
+
|
439 |
+
def generate_answer(self, question: str, context: List[str]) -> str:
|
440 |
+
prompt = f"""Based on the context provided below, answer the question.
|
441 |
+
If the answer is not in the context, respond with "The answer is not in the provided context."
|
442 |
+
|
443 |
+
Context:
|
444 |
+
{' '.join(context)}
|
445 |
+
|
446 |
+
Question: {question}
|
447 |
+
"""
|
448 |
+
|
449 |
+
response = openai.chat.completions.create( # Updated line
|
450 |
+
model="gpt-4",
|
451 |
+
messages=[
|
452 |
+
{"role": "system", "content": "You are an assistant answering questions based on the provided context."},
|
453 |
+
{"role": "user", "content": prompt}
|
454 |
+
],
|
455 |
+
temperature=0,
|
456 |
+
max_tokens=500
|
457 |
+
)
|
458 |
+
return response.choices[0].message.content
|
459 |
+
|
460 |
+
|
461 |
+
--- File: /home/sk/Desktop/chat-with-pdf/utils/embeddings_utils.py ---
|
462 |
+
|
463 |
+
import openai
|
464 |
+
import numpy as np
|
465 |
+
import faiss
|
466 |
+
from typing import List
|
467 |
+
|
468 |
+
class EmbeddingsManager:
|
469 |
+
def __init__(self, api_key: str):
|
470 |
+
self.api_key = api_key
|
471 |
+
self.index = None
|
472 |
+
self.chunks = []
|
473 |
+
|
474 |
+
def generate_embeddings(self, text_chunks: List[str]):
|
475 |
+
"""Generate embeddings for text chunks using OpenAI API."""
|
476 |
+
batch_size = 10
|
477 |
+
embeddings = []
|
478 |
+
|
479 |
+
for i in range(0, len(text_chunks), batch_size):
|
480 |
+
batch = text_chunks[i:i + batch_size]
|
481 |
+
response = openai.embeddings.create(
|
482 |
+
input=batch,
|
483 |
+
model="text-embedding-ada-002"
|
484 |
+
)
|
485 |
+
# Access the embeddings using attributes
|
486 |
+
batch_embeddings = [item.embedding for item in response.data]
|
487 |
+
embeddings.extend(batch_embeddings)
|
488 |
+
|
489 |
+
# Create FAISS index
|
490 |
+
dimension = len(embeddings[0])
|
491 |
+
self.index = faiss.IndexFlatL2(dimension)
|
492 |
+
embeddings_array = np.array(embeddings).astype('float32')
|
493 |
+
self.index.add(embeddings_array)
|
494 |
+
self.chunks = text_chunks
|
495 |
+
|
496 |
+
def find_relevant_chunks(self, query: str, k: int = 3) -> List[str]:
|
497 |
+
"""Find most relevant text chunks for a given query."""
|
498 |
+
response = openai.embeddings.create(
|
499 |
+
input=[query],
|
500 |
+
model="text-embedding-ada-002"
|
501 |
+
)
|
502 |
+
# Access the query embedding using attributes
|
503 |
+
query_embedding = response.data[0].embedding
|
504 |
+
|
505 |
+
D, I = self.index.search(
|
506 |
+
np.array([query_embedding]).astype('float32'),
|
507 |
+
k
|
508 |
+
)
|
509 |
+
|
510 |
+
return [self.chunks[i] for i in I[0] if i != -1]
|
511 |
+
|
512 |
+
|
513 |
+
--- File: /home/sk/Desktop/chat-with-pdf/utils/pdf_utils.py ---
|
514 |
+
|
515 |
+
import PyPDF2
|
516 |
+
from typing import List, Dict
|
517 |
+
|
518 |
+
class PDFProcessor:
|
519 |
+
def __init__(self):
|
520 |
+
self.pages = {}
|
521 |
+
|
522 |
+
def extract_text(self, pdf_file) -> Dict[int, str]:
|
523 |
+
"""Extract text from PDF and return a dictionary of page numbers and text."""
|
524 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
525 |
+
for page_num in range(len(pdf_reader.pages)):
|
526 |
+
text = pdf_reader.pages[page_num].extract_text()
|
527 |
+
self.pages[page_num] = text
|
528 |
+
return self.pages
|
529 |
+
|
530 |
+
def chunk_text(self, text: str, chunk_size: int = 1000) -> List[str]:
|
531 |
+
"""Split text into chunks of specified size."""
|
532 |
+
words = text.split()
|
533 |
+
chunks = []
|
534 |
+
current_chunk = []
|
535 |
+
current_size = 0
|
536 |
+
|
537 |
+
for word in words:
|
538 |
+
current_size += len(word) + 1 # +1 for space
|
539 |
+
if current_size > chunk_size:
|
540 |
+
chunks.append(' '.join(current_chunk))
|
541 |
+
current_chunk = [word]
|
542 |
+
current_size = len(word)
|
543 |
+
else:
|
544 |
+
current_chunk.append(word)
|
545 |
+
|
546 |
+
if current_chunk:
|
547 |
+
chunks.append(' '.join(current_chunk))
|
548 |
+
|
549 |
+
return chunks
|
550 |
+
|
551 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
PyPDF2
|
3 |
+
openai
|
4 |
+
python-dotenv
|
5 |
+
faiss-cpu
|
6 |
+
numpy
|
7 |
+
pdf2image
|
8 |
+
Pillow
|
textScript.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
def extract_text_from_folder(folder_path, output_file, files_to_skip=None, folders_to_skip=None):
|
4 |
+
"""
|
5 |
+
Extracts text from all files within a folder and its subfolders.
|
6 |
+
"""
|
7 |
+
|
8 |
+
if files_to_skip is None:
|
9 |
+
files_to_skip = []
|
10 |
+
if folders_to_skip is None:
|
11 |
+
folders_to_skip = []
|
12 |
+
|
13 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
14 |
+
output_file_path = os.path.join(script_dir, output_file)
|
15 |
+
|
16 |
+
with open(output_file_path, 'w', encoding='utf-8') as outfile:
|
17 |
+
for foldername, subfolders, filenames in os.walk(folder_path):
|
18 |
+
# Check if folder to skip is in the current folder path
|
19 |
+
should_skip_folder = any(folder in foldername for folder in folders_to_skip)
|
20 |
+
|
21 |
+
if should_skip_folder:
|
22 |
+
print(f"Skipping specified folder: {foldername}")
|
23 |
+
continue
|
24 |
+
|
25 |
+
for filename in filenames:
|
26 |
+
if filename in files_to_skip:
|
27 |
+
print(f"Skipping specified file: {filename}")
|
28 |
+
continue
|
29 |
+
|
30 |
+
file_path = os.path.join(foldername, filename)
|
31 |
+
|
32 |
+
try:
|
33 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
34 |
+
text = f.read()
|
35 |
+
outfile.write(f"--- File: {file_path} ---\n\n")
|
36 |
+
outfile.write(text)
|
37 |
+
outfile.write("\n\n")
|
38 |
+
except UnicodeDecodeError:
|
39 |
+
print(f"Skipping binary file: {file_path}")
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error processing {file_path}: {e}")
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
folder_to_extract = "/home/sk/Desktop/chat-with-pdf"
|
45 |
+
output_text_file = "extracted_text.txt"
|
46 |
+
files_to_skip = ["extracted_text.txt", "next.config.ts", "next.config.mjs", "tailwind.config.ts", "tsconfig.json","postcss.config.mjs","next-env.d.ts","components.json",".eslintrc.json","EDA.ipynb","evaluate.ipynb","textScript.py","stock_price.csv","README.md","globals.css","auto_complete.json", "another_file.css", "LogoBadge.svelte","README.md",".gitignore","package-lock.json","package.json"]
|
47 |
+
folders_to_skip = ["__pycache__", "venv", ".next","results","models","notebooks","data","env","__pycache__","redux","resetpassword","login","register","assets","icon", "asset", "node_modules",".git"]
|
48 |
+
|
49 |
+
extract_text_from_folder(folder_to_extract, output_text_file, files_to_skip, folders_to_skip)
|
50 |
+
print(f"Text extraction complete. Output saved to: {output_text_file}")
|
utils/embeddings_utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import numpy as np
|
3 |
+
import faiss
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
class EmbeddingsManager:
|
7 |
+
def __init__(self, api_key: str):
|
8 |
+
self.api_key = api_key
|
9 |
+
self.index = None
|
10 |
+
self.chunks = []
|
11 |
+
|
12 |
+
def generate_embeddings(self, text_chunks: List[str]):
|
13 |
+
"""Generate embeddings for text chunks using OpenAI API."""
|
14 |
+
batch_size = 10
|
15 |
+
embeddings = []
|
16 |
+
|
17 |
+
for i in range(0, len(text_chunks), batch_size):
|
18 |
+
batch = text_chunks[i:i + batch_size]
|
19 |
+
response = openai.embeddings.create(
|
20 |
+
input=batch,
|
21 |
+
model="text-embedding-ada-002"
|
22 |
+
)
|
23 |
+
# Access the embeddings using attributes
|
24 |
+
batch_embeddings = [item.embedding for item in response.data]
|
25 |
+
embeddings.extend(batch_embeddings)
|
26 |
+
|
27 |
+
# Create FAISS index
|
28 |
+
dimension = len(embeddings[0])
|
29 |
+
self.index = faiss.IndexFlatL2(dimension)
|
30 |
+
embeddings_array = np.array(embeddings).astype('float32')
|
31 |
+
self.index.add(embeddings_array)
|
32 |
+
self.chunks = text_chunks
|
33 |
+
|
34 |
+
def find_relevant_chunks(self, query: str, k: int = 3) -> List[str]:
|
35 |
+
"""Find most relevant text chunks for a given query."""
|
36 |
+
response = openai.embeddings.create(
|
37 |
+
input=[query],
|
38 |
+
model="text-embedding-ada-002"
|
39 |
+
)
|
40 |
+
# Access the query embedding using attributes
|
41 |
+
query_embedding = response.data[0].embedding
|
42 |
+
|
43 |
+
D, I = self.index.search(
|
44 |
+
np.array([query_embedding]).astype('float32'),
|
45 |
+
k
|
46 |
+
)
|
47 |
+
|
48 |
+
return [self.chunks[i] for i in I[0] if i != -1]
|
utils/pdf_utils.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
from typing import List, Dict
|
3 |
+
|
4 |
+
class PDFProcessor:
|
5 |
+
def __init__(self):
|
6 |
+
self.pages = {}
|
7 |
+
|
8 |
+
def extract_text(self, pdf_file) -> Dict[int, str]:
|
9 |
+
"""Extract text from PDF and return a dictionary of page numbers and text."""
|
10 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
11 |
+
for page_num in range(len(pdf_reader.pages)):
|
12 |
+
text = pdf_reader.pages[page_num].extract_text()
|
13 |
+
self.pages[page_num] = text
|
14 |
+
return self.pages
|
15 |
+
|
16 |
+
def chunk_text(self, text: str, chunk_size: int = 1000) -> List[str]:
|
17 |
+
"""Split text into chunks of specified size."""
|
18 |
+
words = text.split()
|
19 |
+
chunks = []
|
20 |
+
current_chunk = []
|
21 |
+
current_size = 0
|
22 |
+
|
23 |
+
for word in words:
|
24 |
+
current_size += len(word) + 1 # +1 for space
|
25 |
+
if current_size > chunk_size:
|
26 |
+
chunks.append(' '.join(current_chunk))
|
27 |
+
current_chunk = [word]
|
28 |
+
current_size = len(word)
|
29 |
+
else:
|
30 |
+
current_chunk.append(word)
|
31 |
+
|
32 |
+
if current_chunk:
|
33 |
+
chunks.append(' '.join(current_chunk))
|
34 |
+
|
35 |
+
return chunks
|
utils/qa_utils.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class QASystem:
|
5 |
+
def __init__(self, api_key: str):
|
6 |
+
openai.api_key = api_key
|
7 |
+
|
8 |
+
def generate_answer(self, question: str, context: List[str]) -> str:
|
9 |
+
prompt = f"""Based on the context provided below, answer the question.
|
10 |
+
If the answer is not in the context, respond with "The answer is not in the provided context."
|
11 |
+
|
12 |
+
Context:
|
13 |
+
{' '.join(context)}
|
14 |
+
|
15 |
+
Question: {question}
|
16 |
+
"""
|
17 |
+
|
18 |
+
response = openai.chat.completions.create( # Updated line
|
19 |
+
model="gpt-4",
|
20 |
+
messages=[
|
21 |
+
{"role": "system", "content": "You are an assistant answering questions based on the provided context."},
|
22 |
+
{"role": "user", "content": prompt}
|
23 |
+
],
|
24 |
+
temperature=0,
|
25 |
+
max_tokens=500
|
26 |
+
)
|
27 |
+
return response.choices[0].message.content
|