Spaces:
Running
Running
Commit
Β·
f216530
1
Parent(s):
b3d97d5
updated app.py
Browse files- app.py +35 -25
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,33 +1,43 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
from transformers import BertTokenizer, EncoderDecoderModel, pipeline
|
4 |
|
5 |
-
# Load
|
6 |
-
|
7 |
-
tokenizer = BertTokenizer.from_pretrained("imsachinsingh00/bert2bert-mts-summary")
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
# Summarization function
|
14 |
-
def
|
15 |
-
inputs = tokenizer(
|
16 |
-
|
17 |
-
summary = tokenizer.decode(
|
18 |
return summary
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
)
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, BertTokenizer, EncoderDecoderModel
|
3 |
import torch
|
|
|
4 |
|
5 |
+
# Load Whisper for speech-to-text
|
6 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
|
|
7 |
|
8 |
+
# Load your fine-tuned summarization model
|
9 |
+
model_name = "Imsachinsingh00/bert2bert-mts-summary"
|
10 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
11 |
+
model = EncoderDecoderModel.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
# Summarization function
|
14 |
+
def summarize_text(text):
|
15 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
16 |
+
outputs = model.generate(**inputs, max_length=64)
|
17 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
return summary
|
19 |
|
20 |
+
# Pipeline: audio β transcription
|
21 |
+
def transcribe(audio):
|
22 |
+
return asr(audio)["text"]
|
23 |
+
|
24 |
+
# App UI
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.Markdown("## π©Ί Medical Dialogue Summarizer")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
with gr.Column():
|
30 |
+
audio_input = gr.Audio(source="microphone", type="filepath", label="ποΈ Record Dialogue")
|
31 |
+
transcribed_text = gr.Textbox(lines=10, label="π Transcribed Text (editable)")
|
32 |
+
|
33 |
+
record_button = gr.Button("π§ Transcribe")
|
34 |
+
record_button.click(transcribe, inputs=audio_input, outputs=transcribed_text)
|
35 |
+
|
36 |
+
with gr.Column():
|
37 |
+
summary_output = gr.Textbox(lines=10, label="π Summary (output)", interactive=False)
|
38 |
+
summarize_button = gr.Button("βοΈ Summarize")
|
39 |
+
summarize_button.click(summarize_text, inputs=transcribed_text, outputs=summary_output)
|
40 |
+
|
41 |
+
gr.Markdown("Built for Voize Interview β Powered by Whisper + BERT")
|
42 |
+
|
43 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ transformers
|
|
2 |
datasets
|
3 |
evaluate
|
4 |
rouge_score
|
5 |
-
torch
|
|
|
|
2 |
datasets
|
3 |
evaluate
|
4 |
rouge_score
|
5 |
+
torch
|
6 |
+
gradio
|