Spaces:
Running
Running
Commit
·
b3d97d5
1
Parent(s):
586b493
initial commit
Browse files- app.py +33 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizer, EncoderDecoderModel, pipeline
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model = EncoderDecoderModel.from_pretrained("imsachinsingh00/bert2bert-mts-summary")
|
7 |
+
tokenizer = BertTokenizer.from_pretrained("imsachinsingh00/bert2bert-mts-summary")
|
8 |
+
|
9 |
+
# Move to CUDA if available
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
# Summarization function
|
14 |
+
def summarize_dialogue(dialogue):
|
15 |
+
inputs = tokenizer(dialogue, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
16 |
+
summary_ids = model.generate(inputs.input_ids, max_length=64, num_beams=4, early_stopping=True)
|
17 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
18 |
+
return summary
|
19 |
+
|
20 |
+
# Gradio interface
|
21 |
+
demo = gr.Interface(
|
22 |
+
fn=summarize_dialogue,
|
23 |
+
inputs=[
|
24 |
+
gr.Textbox(lines=10, label="Doctor-Patient Dialogue"),
|
25 |
+
gr.Audio(source="microphone", type="filepath", optional=True)
|
26 |
+
],
|
27 |
+
outputs="text",
|
28 |
+
title="Medical Dialogue Summarizer",
|
29 |
+
description="Enter or speak a conversation. The model will summarize it."
|
30 |
+
)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
evaluate
|
4 |
+
rouge_score
|
5 |
+
torch
|