Imsachinsingh00's picture
remove python slim
4629ff1
import csv
import time
from datetime import datetime, timedelta
from ultralytics import YOLO
import cv2
import mediapipe as mp
import numpy as np
from flask import Flask, render_template, Response, redirect, url_for, request, send_from_directory, flash
import os
import plotly.express as px
import pandas as pd
from werkzeug.utils import secure_filename
import json
import matplotlib.pyplot as plt
import uuid
import random # Make sure to import the random module
from datetime import datetime # Import datetime for timestamp
import string # Add this line to use string.ascii_letters and string.digits
import pyaudio
import wave
import whisper
from transformers import pipeline
import csv
import os
import pandas as pd
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, flash
from flask import jsonify
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
from openai import OpenAI
from io import StringIO
import re
from flask import session
# Flask app setup
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.secret_key = 'supersecretkey'
# Custom function to load YOLO model safely
def safe_load_yolo_model(model_path):
try:
return YOLO(model_path)
except Exception as e:
print(f"Failed to load model: {e}")
raise
# Load YOLO model
model_path = './best.pt'
model = safe_load_yolo_model(model_path)
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# Load Whisper model for speech-to-text
whisper_model = whisper.load_model("base") # ✅ This is correct!
# Variables to hold CSV data and other states between requests
original_data = None
updated_data = None
csv_filename = None
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
# Initialize variables for tracking gestures
previous_gesture = None
gesture_start_time = None
gesture_data_list = []
capture_flag = True # This flag is used to indicate when to capture
start_recording_time = None # To record the start time of the session
# Default labels dictionary
labels_dict = {0: 'fist', 1: 'ok', 2: 'peace', 3: 'stop', 4: 'two up'}
custom_labels_dict = labels_dict.copy() # To store custom labels set by user
# Initialize OpenAI client
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
# Function to interact with OpenAI's GPT model using streaming
def get_gpt_instruction_response(instruction, csv_data):
messages = [
{"role": "system", "content": "You are a helpful assistant that processes CSV files."},
{"role": "user", "content": f"Here is a CSV data:\n\n{csv_data}\n\nThe user has requested the following change: {instruction}\n\nPlease process the data accordingly and return the modified CSV."}
]
# Stream response from OpenAI API
stream = client.chat.completions.create(
model="gpt-4o-mini", # or "gpt-3.5-turbo"
messages=messages,
stream=True,
)
response = ""
for chunk in stream:
if chunk.choices[0].delta.content is not None:
response += chunk.choices[0].delta.content
return response.strip()
# Function to read CSV and convert it to string
def read_csv_to_string(file_path):
df = pd.read_csv(file_path)
return df.to_csv(index=False)
# Function to write modified CSV string to a file
def write_csv_from_string(csv_string, output_file_path):
with open(output_file_path, 'w') as file:
file.write(csv_string)
# Function to record audio
def record_audio(filename, duration=10):
chunk = 1024
sample_format = pyaudio.paInt16
channels = 1
fs = 44100
p = pyaudio.PyAudio()
print('Recording...')
stream = p.open(format=sample_format, channels=channels, rate=fs, frames_per_buffer=chunk, input=True)
frames = []
for _ in range(0, int(fs / chunk * duration)):
data = stream.read(chunk)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
print('Finished recording.')
wf = wave.open(filename, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()
# Function to transcribe audio using Whisper
def transcribe_audio(file_path):
result = whisper_model.transcribe(file_path)
return result["text"]
@app.route('/')
def index():
return render_template('index.html')
@app.route('/set_labels', methods=['GET', 'POST'])
def set_labels():
global custom_labels_dict
if request.method == 'POST':
custom_labels_dict[0] = request.form['label1']
custom_labels_dict[1] = request.form['label2']
custom_labels_dict[2] = request.form['label3']
custom_labels_dict[3] = request.form['label4']
custom_labels_dict[4] = request.form['label5']
# Remove empty labels
custom_labels_dict = {k: v for k, v in custom_labels_dict.items() if v}
return redirect(url_for('recognize'))
return render_template('set_labels.html')
@app.route('/recognize')
def recognize():
return render_template('recognize.html')
@app.route('/video_feed')
def video_feed():
return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
def generate_frames():
global previous_gesture, gesture_start_time, gesture_data_list, capture_flag, start_recording_time
# Initialize start recording time
start_recording_time = datetime.now()
cap = cv2.VideoCapture(0)
while capture_flag:
data_aux = []
x_ = []
y_ = []
ret, frame = cap.read()
if not ret:
break
H, W, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(frame_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
for hand_landmarks in results.multi_hand_landmarks:
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
x1 = int(min(x_) * W) - 10
y1 = int(min(y_) * H) - 10
x2 = int(max(x_) * W) + 10
y2 = int(max(y_) * H) + 10
prediction = model.predict(frame, conf=0.25, iou=0.45)
probs = prediction[0].probs.data.numpy()
detected_gesture_index = np.argmax(probs)
detected_gesture = custom_labels_dict.get(detected_gesture_index, None)
if detected_gesture is None:
continue
# Get the current timestamp and calculate relative time from the start
current_time = datetime.now()
relative_time = current_time - start_recording_time
# Check if the detected gesture has changed
if detected_gesture != previous_gesture:
# If the detected gesture has changed, calculate the duration of the previous gesture
if previous_gesture is not None:
gesture_end_time = relative_time.total_seconds()
gesture_duration = gesture_end_time - gesture_start_time
# Store the detected gesture, start time, end time, and duration in the list
gesture_data_list.append([previous_gesture, gesture_start_time, gesture_end_time, round(gesture_duration, 2)])
# Update the previous gesture and its start time
previous_gesture = detected_gesture
gesture_start_time = relative_time.total_seconds()
# Draw rectangle around the detected gesture
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4)
cv2.putText(frame, detected_gesture, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
cap.release()
@app.route('/upload_csv', methods=['POST'])
def upload_csv():
try:
# Handle file upload
file = request.files.get('csv_file')
if file:
file_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
file.save(file_path)
flash("CSV file uploaded successfully!", "success")
# Load the uploaded CSV file as original data
original_df = pd.read_csv(file_path)
original_data = original_df.to_dict('records')
columns = original_df.columns.tolist()
# Store the original data and file path in the session
session['original_data'] = original_data
session['columns'] = columns
session['file_path'] = file_path
else:
flash("Please upload a CSV file.", "warning")
except Exception as e:
app.logger.error(f"Error in upload_csv route: {e}")
flash("An unexpected error occurred. Please check the logs.", "danger")
return redirect(url_for('edit_csv'))
@app.route('/edit_csv', methods=['GET', 'POST'])
def edit_csv():
updated_data = None
original_data = session.get('original_data', None)
columns = session.get('columns', None)
if request.method == 'POST':
try:
# Ensure a file has been uploaded
file_path = session.get('file_path')
if not file_path:
flash("Please upload a CSV file first.", "warning")
return redirect(url_for('edit_csv'))
# Load the CSV data as string for processing
csv_data = read_csv_to_string(file_path)
# Get the instruction from the form
instruction = request.form.get('transcription', "").strip()
if not instruction:
flash("Please provide an instruction.", "warning")
return redirect(url_for('edit_csv'))
# Process the CSV using OpenAI API
raw_output = get_gpt_instruction_response(instruction, csv_data)
# Extract and clean only the CSV part from the GPT output
csv_pattern = re.compile(r"(?<=```)([\s\S]*?)(?=```)|([\s\S]*)", re.DOTALL)
match = csv_pattern.search(raw_output)
if match:
csv_content = match.group(1) or match.group(2)
csv_content = csv_content.strip() # Clean up leading/trailing spaces
else:
raise ValueError("No valid CSV content found in GPT output.")
# Further cleaning: Remove any lines not starting with valid CSV columns
csv_lines = csv_content.splitlines()
cleaned_csv_lines = [
line for line in csv_lines if ',' in line and not line.startswith("Here is")
]
cleaned_csv_content = "\n".join(cleaned_csv_lines)
# Save the modified CSV to a file
modified_file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
with open(modified_file_path, 'w') as f:
f.write(cleaned_csv_content)
# Load the modified data
updated_data = pd.read_csv(StringIO(cleaned_csv_content)).to_dict('records')
# Store the updated data in the session
session['updated_data'] = updated_data
except Exception as e:
app.logger.error(f"Error in edit_csv route: {e}")
flash("An unexpected error occurred. Please check the logs.", "danger")
# Load updated data from session if available
updated_data = session.get('updated_data', None)
return render_template('edit_csv.html', original_data=original_data, updated_data=updated_data, columns=columns)
# Route: Download Modified CSV
@app.route('/download_csv_updated')
def download_csv_updated():
file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
if not os.path.isfile(file_path):
flash("Updated CSV file not found!", "warning")
return redirect(url_for('edit_csv'))
return send_from_directory(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv', as_attachment=True)
# Process uploaded audio using Whisper
@app.route('/process_audio', methods=['POST'])
def process_audio():
if 'audio' not in request.files:
return jsonify({'error': 'No audio file provided'}), 400
audio_file = request.files['audio']
audio_file_path = 'recorded_audio.wav'
audio_file.save(audio_file_path)
# Transcribe audio using Whisper
transcription = transcribe_audio(audio_file_path)
return jsonify({'transcription': transcription})
@app.route('/data_view', methods=['GET'])
def data_view():
csv_file = request.args.get('csv_file', 'static/gesture_data.csv')
gesture_data = load_csv_data(csv_file)
df = pd.DataFrame(gesture_data, columns=['Gesture', 'Start Time', 'End Time', 'Duration'])
gesture_counts = df['Gesture'].value_counts().reset_index()
gesture_counts.columns = ['Gesture', 'Count']
fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
html_chart = fig.to_html(full_html=False)
return render_template('data.html', gesture_data=gesture_data, html_chart=html_chart)
import pandas as pd
from flask import render_template
@app.route('/datadiff')
def datadiff():
# Load original and modified CSV files
original_csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'gesture_data.csv')
modified_csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
# Read the CSVs into pandas DataFrames
original_csv = pd.read_csv(original_csv_path)
modified_csv = pd.read_csv(modified_csv_path)
# Render the datadiff.html page with the data for comparison
return render_template('datadiff.html', original_csv=original_csv, modified_csv=modified_csv)
def load_csv_data(file_path):
gesture_data = []
with open(file_path, 'r') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
gesture_data.append(row)
return gesture_data
@app.route('/save_data')
def save_gesture_data():
global capture_flag
capture_flag = False
# Ensure gesture data is actually populated
print("Saving gesture data:", gesture_data_list)
# Ensure the static directory exists
os.makedirs('static', exist_ok=True)
# Save data to JSON file in Label Studio-compatible format
json_file_path = os.path.join('static', 'gesture_data_labelstudio.json')
save_label_studio_json(gesture_data_list, json_file_path)
# Save data to CSV file for visualization
csv_file_path = os.path.join('static', 'gesture_data.csv')
save_gesture_csv(gesture_data_list, csv_file_path)
return redirect(url_for('data'))
import random # Make sure to import the random module
import uuid # Make sure to import uuid for unique IDs
from datetime import datetime # Import datetime for timestamp
def generate_alphanumeric_id(length=5):
"""Generates a random alphanumeric ID."""
return ''.join(random.choices(string.ascii_letters + string.digits, k=length))
def save_label_studio_json(gesture_data, file_path):
current_time = datetime.utcnow().isoformat() + "Z"
# Create a single task with all annotations
annotations = {
"id": 1, # Task ID
"annotations": [
{
"id": 1, # Annotation ID
"completed_by": 1,
"result": [],
"was_cancelled": False,
"ground_truth": False,
"created_at": current_time,
"updated_at": current_time,
"draft_created_at": current_time,
"lead_time": sum(duration for _, _, _, duration in gesture_data),
"prediction": {},
"result_count": 0,
"unique_id": str(uuid.uuid4()),
"import_id": None,
"last_action": None,
"task": 1,
"project": 25,
"updated_by": 1,
"parent_prediction": None,
"parent_annotation": None,
"last_created_by": None
}
],
"file_upload": "1212df4d-HandyLabels.MP4",
"drafts": [],
"predictions": [],
"data": {
"video_url": "/data/upload/30/030cca83-Video_1.mp4"
},
"meta": {},
"created_at": current_time,
"updated_at": current_time,
"inner_id": 1,
"total_annotations": 1,
"cancelled_annotations": 0,
"total_predictions": 0,
"comment_count": 0,
"unresolved_comment_count": 0,
"last_comment_updated_at": None,
"project": 25,
"updated_by": 1,
"comment_authors": []
}
# Add each gesture as an individual result within the annotation
for gesture, start_time, end_time, duration in gesture_data:
annotation_result = {
"original_length": end_time - start_time,
"value": {
"start": start_time,
"end": end_time,
"channel": 0,
"labels": [gesture]
},
"id": generate_alphanumeric_id(), # Generate a unique 5-character alphanumeric ID for each result
"from_name": "tricks",
"to_name": "audio",
"type": "labels",
"origin": "manual"
}
annotations["annotations"][0]["result"].append(annotation_result)
# Save the consolidated JSON to the file
with open(file_path, 'w') as json_file:
json.dump([annotations], json_file, indent=2)
print(f"Label Studio JSON saved to: {file_path}")
def save_gesture_csv(gesture_data, file_path):
with open(file_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['Gesture', 'Start Time', 'End Time', 'Duration'])
for gesture, start_time, end_time, duration in gesture_data:
writer.writerow([gesture, start_time, end_time, duration])
@app.route('/data')
def data():
gesture_data = load_csv_data()
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(gesture_data, columns=['Gesture', 'Start Time', 'End Time', 'Duration'])
# Count occurrences of each gesture
gesture_counts = df['Gesture'].value_counts().reset_index()
gesture_counts.columns = ['Gesture', 'Count']
# Create the pie chart using Plotly
fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
# Convert the plotly chart to HTML
html_chart = fig.to_html(full_html=False)
return render_template('data.html', gesture_data=gesture_data, html_chart=html_chart)
def load_csv_data():
gesture_data = []
with open('static/gesture_data.csv', 'r') as csvfile:
reader = csv.reader(csvfile)
next(reader) # Skip the header row
for row in reader:
gesture_data.append(row)
return gesture_data
@app.route('/download_json')
def download_json():
file_path = os.path.join('static', 'gesture_data_labelstudio.json')
if not os.path.isfile(file_path):
return "JSON file not found!", 404
return send_from_directory('static', 'gesture_data_labelstudio.json', as_attachment=True)
@app.route('/download_csv')
def download_csv():
filename = request.args.get('filename')
if filename == 'original':
path = os.path.join(app.config['UPLOAD_FOLDER'], 'gesture_data.csv')
elif filename == 'updated':
path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
else:
flash('Invalid file requested')
return redirect(url_for('edit_csv'))
if not os.path.exists(path):
flash('File not found!')
return redirect(url_for('edit_csv'))
return send_from_directory(app.config['UPLOAD_FOLDER'], os.path.basename(path), as_attachment=True)
# New route to download the modified CSV
@app.route('/download_csv_modified')
def download_csv_modified():
file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
if not os.path.isfile(file_path):
return "Modified CSV file not found!", 404
return send_from_directory(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv', as_attachment=True)
# Import Data Functionality to Visualize Imported CSV
@app.route('/import_data', methods=['GET', 'POST'])
def import_data():
if request.method == 'POST':
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
return redirect(url_for('visualize_data', file_path=file_path))
return render_template('import_data.html')
@app.route('/visualize_data')
def visualize_data():
file_path = request.args.get('file_path')
if not os.path.exists(file_path):
return "The file could not be found.", 404
return visualize_csv(file_path)
def visualize_csv(file_path):
try:
# Load gesture data from CSV and process it for visualization
data = pd.read_csv(file_path)
# Check if necessary columns are present
required_columns = ['Gesture', 'Start Time', 'End Time', 'Duration']
if not set(required_columns).issubset(data.columns):
return f"The uploaded CSV must contain the following columns: {required_columns}", 400
# Extract relevant columns
gesture_df = data[required_columns]
# Generate a pie chart for gesture distribution
gesture_counts = gesture_df['Gesture'].value_counts().reset_index()
gesture_counts.columns = ['Gesture', 'Count']
# Create the pie chart using Plotly
fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
# Convert the plotly chart to HTML
html_chart = fig.to_html(full_html=False)
# Render the data.html template with the gesture data and chart
return render_template('data.html', gesture_data=gesture_df.to_dict('records'), html_chart=html_chart)
except Exception as e:
return f"An error occurred while processing the file: {str(e)}", 500
if __name__ == '__main__':
port = int(os.environ.get("PORT", 5000))
app.run(host='0.0.0.0', port=port, debug=True)