Spaces:
Runtime error
Runtime error
File size: 23,521 Bytes
43317b5 d172d27 43317b5 ebe3da3 43317b5 4629ff1 c7f8880 b64aae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import csv
import time
from datetime import datetime, timedelta
from ultralytics import YOLO
import cv2
import mediapipe as mp
import numpy as np
from flask import Flask, render_template, Response, redirect, url_for, request, send_from_directory, flash
import os
import plotly.express as px
import pandas as pd
from werkzeug.utils import secure_filename
import json
import matplotlib.pyplot as plt
import uuid
import random # Make sure to import the random module
from datetime import datetime # Import datetime for timestamp
import string # Add this line to use string.ascii_letters and string.digits
import pyaudio
import wave
import whisper
from transformers import pipeline
import csv
import os
import pandas as pd
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, flash
from flask import jsonify
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
from openai import OpenAI
from io import StringIO
import re
from flask import session
# Flask app setup
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.secret_key = 'supersecretkey'
# Custom function to load YOLO model safely
def safe_load_yolo_model(model_path):
try:
return YOLO(model_path)
except Exception as e:
print(f"Failed to load model: {e}")
raise
# Load YOLO model
model_path = './best.pt'
model = safe_load_yolo_model(model_path)
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# Load Whisper model for speech-to-text
whisper_model = whisper.load_model("base") # ✅ This is correct!
# Variables to hold CSV data and other states between requests
original_data = None
updated_data = None
csv_filename = None
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
# Initialize variables for tracking gestures
previous_gesture = None
gesture_start_time = None
gesture_data_list = []
capture_flag = True # This flag is used to indicate when to capture
start_recording_time = None # To record the start time of the session
# Default labels dictionary
labels_dict = {0: 'fist', 1: 'ok', 2: 'peace', 3: 'stop', 4: 'two up'}
custom_labels_dict = labels_dict.copy() # To store custom labels set by user
# Initialize OpenAI client
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
# Function to interact with OpenAI's GPT model using streaming
def get_gpt_instruction_response(instruction, csv_data):
messages = [
{"role": "system", "content": "You are a helpful assistant that processes CSV files."},
{"role": "user", "content": f"Here is a CSV data:\n\n{csv_data}\n\nThe user has requested the following change: {instruction}\n\nPlease process the data accordingly and return the modified CSV."}
]
# Stream response from OpenAI API
stream = client.chat.completions.create(
model="gpt-4o-mini", # or "gpt-3.5-turbo"
messages=messages,
stream=True,
)
response = ""
for chunk in stream:
if chunk.choices[0].delta.content is not None:
response += chunk.choices[0].delta.content
return response.strip()
# Function to read CSV and convert it to string
def read_csv_to_string(file_path):
df = pd.read_csv(file_path)
return df.to_csv(index=False)
# Function to write modified CSV string to a file
def write_csv_from_string(csv_string, output_file_path):
with open(output_file_path, 'w') as file:
file.write(csv_string)
# Function to record audio
def record_audio(filename, duration=10):
chunk = 1024
sample_format = pyaudio.paInt16
channels = 1
fs = 44100
p = pyaudio.PyAudio()
print('Recording...')
stream = p.open(format=sample_format, channels=channels, rate=fs, frames_per_buffer=chunk, input=True)
frames = []
for _ in range(0, int(fs / chunk * duration)):
data = stream.read(chunk)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
print('Finished recording.')
wf = wave.open(filename, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()
# Function to transcribe audio using Whisper
def transcribe_audio(file_path):
result = whisper_model.transcribe(file_path)
return result["text"]
@app.route('/')
def index():
return render_template('index.html')
@app.route('/set_labels', methods=['GET', 'POST'])
def set_labels():
global custom_labels_dict
if request.method == 'POST':
custom_labels_dict[0] = request.form['label1']
custom_labels_dict[1] = request.form['label2']
custom_labels_dict[2] = request.form['label3']
custom_labels_dict[3] = request.form['label4']
custom_labels_dict[4] = request.form['label5']
# Remove empty labels
custom_labels_dict = {k: v for k, v in custom_labels_dict.items() if v}
return redirect(url_for('recognize'))
return render_template('set_labels.html')
@app.route('/recognize')
def recognize():
return render_template('recognize.html')
@app.route('/video_feed')
def video_feed():
return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
def generate_frames():
global previous_gesture, gesture_start_time, gesture_data_list, capture_flag, start_recording_time
# Initialize start recording time
start_recording_time = datetime.now()
cap = cv2.VideoCapture(0)
while capture_flag:
data_aux = []
x_ = []
y_ = []
ret, frame = cap.read()
if not ret:
break
H, W, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(frame_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
for hand_landmarks in results.multi_hand_landmarks:
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
x1 = int(min(x_) * W) - 10
y1 = int(min(y_) * H) - 10
x2 = int(max(x_) * W) + 10
y2 = int(max(y_) * H) + 10
prediction = model.predict(frame, conf=0.25, iou=0.45)
probs = prediction[0].probs.data.numpy()
detected_gesture_index = np.argmax(probs)
detected_gesture = custom_labels_dict.get(detected_gesture_index, None)
if detected_gesture is None:
continue
# Get the current timestamp and calculate relative time from the start
current_time = datetime.now()
relative_time = current_time - start_recording_time
# Check if the detected gesture has changed
if detected_gesture != previous_gesture:
# If the detected gesture has changed, calculate the duration of the previous gesture
if previous_gesture is not None:
gesture_end_time = relative_time.total_seconds()
gesture_duration = gesture_end_time - gesture_start_time
# Store the detected gesture, start time, end time, and duration in the list
gesture_data_list.append([previous_gesture, gesture_start_time, gesture_end_time, round(gesture_duration, 2)])
# Update the previous gesture and its start time
previous_gesture = detected_gesture
gesture_start_time = relative_time.total_seconds()
# Draw rectangle around the detected gesture
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4)
cv2.putText(frame, detected_gesture, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
cap.release()
@app.route('/upload_csv', methods=['POST'])
def upload_csv():
try:
# Handle file upload
file = request.files.get('csv_file')
if file:
file_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
file.save(file_path)
flash("CSV file uploaded successfully!", "success")
# Load the uploaded CSV file as original data
original_df = pd.read_csv(file_path)
original_data = original_df.to_dict('records')
columns = original_df.columns.tolist()
# Store the original data and file path in the session
session['original_data'] = original_data
session['columns'] = columns
session['file_path'] = file_path
else:
flash("Please upload a CSV file.", "warning")
except Exception as e:
app.logger.error(f"Error in upload_csv route: {e}")
flash("An unexpected error occurred. Please check the logs.", "danger")
return redirect(url_for('edit_csv'))
@app.route('/edit_csv', methods=['GET', 'POST'])
def edit_csv():
updated_data = None
original_data = session.get('original_data', None)
columns = session.get('columns', None)
if request.method == 'POST':
try:
# Ensure a file has been uploaded
file_path = session.get('file_path')
if not file_path:
flash("Please upload a CSV file first.", "warning")
return redirect(url_for('edit_csv'))
# Load the CSV data as string for processing
csv_data = read_csv_to_string(file_path)
# Get the instruction from the form
instruction = request.form.get('transcription', "").strip()
if not instruction:
flash("Please provide an instruction.", "warning")
return redirect(url_for('edit_csv'))
# Process the CSV using OpenAI API
raw_output = get_gpt_instruction_response(instruction, csv_data)
# Extract and clean only the CSV part from the GPT output
csv_pattern = re.compile(r"(?<=```)([\s\S]*?)(?=```)|([\s\S]*)", re.DOTALL)
match = csv_pattern.search(raw_output)
if match:
csv_content = match.group(1) or match.group(2)
csv_content = csv_content.strip() # Clean up leading/trailing spaces
else:
raise ValueError("No valid CSV content found in GPT output.")
# Further cleaning: Remove any lines not starting with valid CSV columns
csv_lines = csv_content.splitlines()
cleaned_csv_lines = [
line for line in csv_lines if ',' in line and not line.startswith("Here is")
]
cleaned_csv_content = "\n".join(cleaned_csv_lines)
# Save the modified CSV to a file
modified_file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
with open(modified_file_path, 'w') as f:
f.write(cleaned_csv_content)
# Load the modified data
updated_data = pd.read_csv(StringIO(cleaned_csv_content)).to_dict('records')
# Store the updated data in the session
session['updated_data'] = updated_data
except Exception as e:
app.logger.error(f"Error in edit_csv route: {e}")
flash("An unexpected error occurred. Please check the logs.", "danger")
# Load updated data from session if available
updated_data = session.get('updated_data', None)
return render_template('edit_csv.html', original_data=original_data, updated_data=updated_data, columns=columns)
# Route: Download Modified CSV
@app.route('/download_csv_updated')
def download_csv_updated():
file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
if not os.path.isfile(file_path):
flash("Updated CSV file not found!", "warning")
return redirect(url_for('edit_csv'))
return send_from_directory(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv', as_attachment=True)
# Process uploaded audio using Whisper
@app.route('/process_audio', methods=['POST'])
def process_audio():
if 'audio' not in request.files:
return jsonify({'error': 'No audio file provided'}), 400
audio_file = request.files['audio']
audio_file_path = 'recorded_audio.wav'
audio_file.save(audio_file_path)
# Transcribe audio using Whisper
transcription = transcribe_audio(audio_file_path)
return jsonify({'transcription': transcription})
@app.route('/data_view', methods=['GET'])
def data_view():
csv_file = request.args.get('csv_file', 'static/gesture_data.csv')
gesture_data = load_csv_data(csv_file)
df = pd.DataFrame(gesture_data, columns=['Gesture', 'Start Time', 'End Time', 'Duration'])
gesture_counts = df['Gesture'].value_counts().reset_index()
gesture_counts.columns = ['Gesture', 'Count']
fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
html_chart = fig.to_html(full_html=False)
return render_template('data.html', gesture_data=gesture_data, html_chart=html_chart)
import pandas as pd
from flask import render_template
@app.route('/datadiff')
def datadiff():
# Load original and modified CSV files
original_csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'gesture_data.csv')
modified_csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
# Read the CSVs into pandas DataFrames
original_csv = pd.read_csv(original_csv_path)
modified_csv = pd.read_csv(modified_csv_path)
# Render the datadiff.html page with the data for comparison
return render_template('datadiff.html', original_csv=original_csv, modified_csv=modified_csv)
def load_csv_data(file_path):
gesture_data = []
with open(file_path, 'r') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
gesture_data.append(row)
return gesture_data
@app.route('/save_data')
def save_gesture_data():
global capture_flag
capture_flag = False
# Ensure gesture data is actually populated
print("Saving gesture data:", gesture_data_list)
# Ensure the static directory exists
os.makedirs('static', exist_ok=True)
# Save data to JSON file in Label Studio-compatible format
json_file_path = os.path.join('static', 'gesture_data_labelstudio.json')
save_label_studio_json(gesture_data_list, json_file_path)
# Save data to CSV file for visualization
csv_file_path = os.path.join('static', 'gesture_data.csv')
save_gesture_csv(gesture_data_list, csv_file_path)
return redirect(url_for('data'))
import random # Make sure to import the random module
import uuid # Make sure to import uuid for unique IDs
from datetime import datetime # Import datetime for timestamp
def generate_alphanumeric_id(length=5):
"""Generates a random alphanumeric ID."""
return ''.join(random.choices(string.ascii_letters + string.digits, k=length))
def save_label_studio_json(gesture_data, file_path):
current_time = datetime.utcnow().isoformat() + "Z"
# Create a single task with all annotations
annotations = {
"id": 1, # Task ID
"annotations": [
{
"id": 1, # Annotation ID
"completed_by": 1,
"result": [],
"was_cancelled": False,
"ground_truth": False,
"created_at": current_time,
"updated_at": current_time,
"draft_created_at": current_time,
"lead_time": sum(duration for _, _, _, duration in gesture_data),
"prediction": {},
"result_count": 0,
"unique_id": str(uuid.uuid4()),
"import_id": None,
"last_action": None,
"task": 1,
"project": 25,
"updated_by": 1,
"parent_prediction": None,
"parent_annotation": None,
"last_created_by": None
}
],
"file_upload": "1212df4d-HandyLabels.MP4",
"drafts": [],
"predictions": [],
"data": {
"video_url": "/data/upload/30/030cca83-Video_1.mp4"
},
"meta": {},
"created_at": current_time,
"updated_at": current_time,
"inner_id": 1,
"total_annotations": 1,
"cancelled_annotations": 0,
"total_predictions": 0,
"comment_count": 0,
"unresolved_comment_count": 0,
"last_comment_updated_at": None,
"project": 25,
"updated_by": 1,
"comment_authors": []
}
# Add each gesture as an individual result within the annotation
for gesture, start_time, end_time, duration in gesture_data:
annotation_result = {
"original_length": end_time - start_time,
"value": {
"start": start_time,
"end": end_time,
"channel": 0,
"labels": [gesture]
},
"id": generate_alphanumeric_id(), # Generate a unique 5-character alphanumeric ID for each result
"from_name": "tricks",
"to_name": "audio",
"type": "labels",
"origin": "manual"
}
annotations["annotations"][0]["result"].append(annotation_result)
# Save the consolidated JSON to the file
with open(file_path, 'w') as json_file:
json.dump([annotations], json_file, indent=2)
print(f"Label Studio JSON saved to: {file_path}")
def save_gesture_csv(gesture_data, file_path):
with open(file_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['Gesture', 'Start Time', 'End Time', 'Duration'])
for gesture, start_time, end_time, duration in gesture_data:
writer.writerow([gesture, start_time, end_time, duration])
@app.route('/data')
def data():
gesture_data = load_csv_data()
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(gesture_data, columns=['Gesture', 'Start Time', 'End Time', 'Duration'])
# Count occurrences of each gesture
gesture_counts = df['Gesture'].value_counts().reset_index()
gesture_counts.columns = ['Gesture', 'Count']
# Create the pie chart using Plotly
fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
# Convert the plotly chart to HTML
html_chart = fig.to_html(full_html=False)
return render_template('data.html', gesture_data=gesture_data, html_chart=html_chart)
def load_csv_data():
gesture_data = []
with open('static/gesture_data.csv', 'r') as csvfile:
reader = csv.reader(csvfile)
next(reader) # Skip the header row
for row in reader:
gesture_data.append(row)
return gesture_data
@app.route('/download_json')
def download_json():
file_path = os.path.join('static', 'gesture_data_labelstudio.json')
if not os.path.isfile(file_path):
return "JSON file not found!", 404
return send_from_directory('static', 'gesture_data_labelstudio.json', as_attachment=True)
@app.route('/download_csv')
def download_csv():
filename = request.args.get('filename')
if filename == 'original':
path = os.path.join(app.config['UPLOAD_FOLDER'], 'gesture_data.csv')
elif filename == 'updated':
path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
else:
flash('Invalid file requested')
return redirect(url_for('edit_csv'))
if not os.path.exists(path):
flash('File not found!')
return redirect(url_for('edit_csv'))
return send_from_directory(app.config['UPLOAD_FOLDER'], os.path.basename(path), as_attachment=True)
# New route to download the modified CSV
@app.route('/download_csv_modified')
def download_csv_modified():
file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
if not os.path.isfile(file_path):
return "Modified CSV file not found!", 404
return send_from_directory(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv', as_attachment=True)
# Import Data Functionality to Visualize Imported CSV
@app.route('/import_data', methods=['GET', 'POST'])
def import_data():
if request.method == 'POST':
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
return redirect(url_for('visualize_data', file_path=file_path))
return render_template('import_data.html')
@app.route('/visualize_data')
def visualize_data():
file_path = request.args.get('file_path')
if not os.path.exists(file_path):
return "The file could not be found.", 404
return visualize_csv(file_path)
def visualize_csv(file_path):
try:
# Load gesture data from CSV and process it for visualization
data = pd.read_csv(file_path)
# Check if necessary columns are present
required_columns = ['Gesture', 'Start Time', 'End Time', 'Duration']
if not set(required_columns).issubset(data.columns):
return f"The uploaded CSV must contain the following columns: {required_columns}", 400
# Extract relevant columns
gesture_df = data[required_columns]
# Generate a pie chart for gesture distribution
gesture_counts = gesture_df['Gesture'].value_counts().reset_index()
gesture_counts.columns = ['Gesture', 'Count']
# Create the pie chart using Plotly
fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
# Convert the plotly chart to HTML
html_chart = fig.to_html(full_html=False)
# Render the data.html template with the gesture data and chart
return render_template('data.html', gesture_data=gesture_df.to_dict('records'), html_chart=html_chart)
except Exception as e:
return f"An error occurred while processing the file: {str(e)}", 500
if __name__ == '__main__':
port = int(os.environ.get("PORT", 5000))
app.run(host='0.0.0.0', port=port, debug=True)
|