File size: 23,521 Bytes
43317b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d172d27
43317b5
 
 
 
 
 
 
 
 
ebe3da3
 
43317b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4629ff1
c7f8880
 
b64aae1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import csv
import time
from datetime import datetime, timedelta
from ultralytics import YOLO
import cv2
import mediapipe as mp
import numpy as np
from flask import Flask, render_template, Response, redirect, url_for, request, send_from_directory, flash
import os
import plotly.express as px
import pandas as pd
from werkzeug.utils import secure_filename
import json
import matplotlib.pyplot as plt
import uuid
import random  # Make sure to import the random module
from datetime import datetime  # Import datetime for timestamp
import string  # Add this line to use string.ascii_letters and string.digits
import pyaudio
import wave
import whisper
from transformers import pipeline
import csv
import os
import pandas as pd
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, flash
from flask import  jsonify
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
from openai import OpenAI
from io import StringIO
import re
from flask import session


# Flask app setup
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.secret_key = 'supersecretkey'

# Custom function to load YOLO model safely
def safe_load_yolo_model(model_path):
    try:
        return YOLO(model_path)
    except Exception as e:
        print(f"Failed to load model: {e}")
        raise

# Load YOLO model
model_path = './best.pt'
model = safe_load_yolo_model(model_path)



mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles

# Load Whisper model for speech-to-text
whisper_model = whisper.load_model("base")  # ✅ This is correct!


# Variables to hold CSV data and other states between requests
original_data = None
updated_data = None
csv_filename = None


hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)

# Initialize variables for tracking gestures
previous_gesture = None
gesture_start_time = None
gesture_data_list = []
capture_flag = True  # This flag is used to indicate when to capture
start_recording_time = None  # To record the start time of the session

# Default labels dictionary
labels_dict = {0: 'fist', 1: 'ok', 2: 'peace', 3: 'stop', 4: 'two up'}
custom_labels_dict = labels_dict.copy()  # To store custom labels set by user

# Initialize OpenAI client
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# Function to interact with OpenAI's GPT model using streaming
def get_gpt_instruction_response(instruction, csv_data):
    messages = [
        {"role": "system", "content": "You are a helpful assistant that processes CSV files."},
        {"role": "user", "content": f"Here is a CSV data:\n\n{csv_data}\n\nThe user has requested the following change: {instruction}\n\nPlease process the data accordingly and return the modified CSV."}
    ]
    
    # Stream response from OpenAI API
    stream = client.chat.completions.create(
        model="gpt-4o-mini",  # or "gpt-3.5-turbo"
        messages=messages,
        stream=True,
    )

    response = ""
    for chunk in stream:
        if chunk.choices[0].delta.content is not None:
            response += chunk.choices[0].delta.content
    
    return response.strip()


# Function to read CSV and convert it to string
def read_csv_to_string(file_path):
    df = pd.read_csv(file_path)
    return df.to_csv(index=False)


# Function to write modified CSV string to a file
def write_csv_from_string(csv_string, output_file_path):
    with open(output_file_path, 'w') as file:
        file.write(csv_string)

# Function to record audio
def record_audio(filename, duration=10):
    chunk = 1024
    sample_format = pyaudio.paInt16
    channels = 1
    fs = 44100

    p = pyaudio.PyAudio()

    print('Recording...')
    stream = p.open(format=sample_format, channels=channels, rate=fs, frames_per_buffer=chunk, input=True)
    frames = []

    for _ in range(0, int(fs / chunk * duration)):
        data = stream.read(chunk)
        frames.append(data)

    stream.stop_stream()
    stream.close()
    p.terminate()
    print('Finished recording.')

    wf = wave.open(filename, 'wb')
    wf.setnchannels(channels)
    wf.setsampwidth(p.get_sample_size(sample_format))
    wf.setframerate(fs)
    wf.writeframes(b''.join(frames))
    wf.close()

# Function to transcribe audio using Whisper
def transcribe_audio(file_path):
    result = whisper_model.transcribe(file_path)
    return result["text"]



@app.route('/')
def index():
    return render_template('index.html')

@app.route('/set_labels', methods=['GET', 'POST'])
def set_labels():
    global custom_labels_dict
    if request.method == 'POST':
        custom_labels_dict[0] = request.form['label1']
        custom_labels_dict[1] = request.form['label2']
        custom_labels_dict[2] = request.form['label3']
        custom_labels_dict[3] = request.form['label4']
        custom_labels_dict[4] = request.form['label5']
        # Remove empty labels
        custom_labels_dict = {k: v for k, v in custom_labels_dict.items() if v}
        return redirect(url_for('recognize'))
    return render_template('set_labels.html')

@app.route('/recognize')
def recognize():
    return render_template('recognize.html')

@app.route('/video_feed')
def video_feed():
    return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')

def generate_frames():
    global previous_gesture, gesture_start_time, gesture_data_list, capture_flag, start_recording_time

    # Initialize start recording time
    start_recording_time = datetime.now()

    cap = cv2.VideoCapture(0)

    while capture_flag:
        data_aux = []
        x_ = []
        y_ = []

        ret, frame = cap.read()
        if not ret:
            break

        H, W, _ = frame.shape

        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        results = hands.process(frame_rgb)
        if results.multi_hand_landmarks:
            for hand_landmarks in results.multi_hand_landmarks:
                mp_drawing.draw_landmarks(
                    frame,
                    hand_landmarks,
                    mp_hands.HAND_CONNECTIONS,
                    mp_drawing_styles.get_default_hand_landmarks_style(),
                    mp_drawing_styles.get_default_hand_connections_style())

            for hand_landmarks in results.multi_hand_landmarks:
                for i in range(len(hand_landmarks.landmark)):
                    x = hand_landmarks.landmark[i].x
                    y = hand_landmarks.landmark[i].y

                    x_.append(x)
                    y_.append(y)

                for i in range(len(hand_landmarks.landmark)):
                    x = hand_landmarks.landmark[i].x
                    y = hand_landmarks.landmark[i].y
                    data_aux.append(x - min(x_))
                    data_aux.append(y - min(y_))

            x1 = int(min(x_) * W) - 10
            y1 = int(min(y_) * H) - 10

            x2 = int(max(x_) * W) + 10
            y2 = int(max(y_) * H) + 10

            prediction = model.predict(frame, conf=0.25, iou=0.45)
            probs = prediction[0].probs.data.numpy()
            detected_gesture_index = np.argmax(probs)
            detected_gesture = custom_labels_dict.get(detected_gesture_index, None)

            if detected_gesture is None:
                continue

            # Get the current timestamp and calculate relative time from the start
            current_time = datetime.now()
            relative_time = current_time - start_recording_time

            # Check if the detected gesture has changed
            if detected_gesture != previous_gesture:
                # If the detected gesture has changed, calculate the duration of the previous gesture
                if previous_gesture is not None:
                    gesture_end_time = relative_time.total_seconds()
                    gesture_duration = gesture_end_time - gesture_start_time
                    # Store the detected gesture, start time, end time, and duration in the list
                    gesture_data_list.append([previous_gesture, gesture_start_time, gesture_end_time, round(gesture_duration, 2)])

                # Update the previous gesture and its start time
                previous_gesture = detected_gesture
                gesture_start_time = relative_time.total_seconds()

            # Draw rectangle around the detected gesture
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4)
            cv2.putText(frame, detected_gesture, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)

        ret, buffer = cv2.imencode('.jpg', frame)
        frame = buffer.tobytes()

        yield (b'--frame\r\n'
               b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

    cap.release()
 

@app.route('/upload_csv', methods=['POST'])
def upload_csv():
    try:
        # Handle file upload
        file = request.files.get('csv_file')
        if file:
            file_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
            file.save(file_path)
            flash("CSV file uploaded successfully!", "success")

            # Load the uploaded CSV file as original data
            original_df = pd.read_csv(file_path)
            original_data = original_df.to_dict('records')
            columns = original_df.columns.tolist()

            # Store the original data and file path in the session
            session['original_data'] = original_data
            session['columns'] = columns
            session['file_path'] = file_path

        else:
            flash("Please upload a CSV file.", "warning")
    except Exception as e:
        app.logger.error(f"Error in upload_csv route: {e}")
        flash("An unexpected error occurred. Please check the logs.", "danger")

    return redirect(url_for('edit_csv'))


@app.route('/edit_csv', methods=['GET', 'POST'])
def edit_csv():
    updated_data = None
    original_data = session.get('original_data', None)
    columns = session.get('columns', None)

    if request.method == 'POST':
        try:
            # Ensure a file has been uploaded
            file_path = session.get('file_path')
            if not file_path:
                flash("Please upload a CSV file first.", "warning")
                return redirect(url_for('edit_csv'))

            # Load the CSV data as string for processing
            csv_data = read_csv_to_string(file_path)

            # Get the instruction from the form
            instruction = request.form.get('transcription', "").strip()
            if not instruction:
                flash("Please provide an instruction.", "warning")
                return redirect(url_for('edit_csv'))

            # Process the CSV using OpenAI API
            raw_output = get_gpt_instruction_response(instruction, csv_data)

            # Extract and clean only the CSV part from the GPT output
            csv_pattern = re.compile(r"(?<=```)([\s\S]*?)(?=```)|([\s\S]*)", re.DOTALL)
            match = csv_pattern.search(raw_output)
            if match:
                csv_content = match.group(1) or match.group(2)
                csv_content = csv_content.strip()  # Clean up leading/trailing spaces
            else:
                raise ValueError("No valid CSV content found in GPT output.")

            # Further cleaning: Remove any lines not starting with valid CSV columns
            csv_lines = csv_content.splitlines()
            cleaned_csv_lines = [
                line for line in csv_lines if ',' in line and not line.startswith("Here is")
            ]
            cleaned_csv_content = "\n".join(cleaned_csv_lines)

            # Save the modified CSV to a file
            modified_file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
            with open(modified_file_path, 'w') as f:
                f.write(cleaned_csv_content)

            # Load the modified data
            updated_data = pd.read_csv(StringIO(cleaned_csv_content)).to_dict('records')

            # Store the updated data in the session
            session['updated_data'] = updated_data

        except Exception as e:
            app.logger.error(f"Error in edit_csv route: {e}")
            flash("An unexpected error occurred. Please check the logs.", "danger")

    # Load updated data from session if available
    updated_data = session.get('updated_data', None)

    return render_template('edit_csv.html', original_data=original_data, updated_data=updated_data, columns=columns)



# Route: Download Modified CSV
@app.route('/download_csv_updated')
def download_csv_updated():
    file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
    if not os.path.isfile(file_path):
        flash("Updated CSV file not found!", "warning")
        return redirect(url_for('edit_csv'))
    return send_from_directory(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv', as_attachment=True)



# Process uploaded audio using Whisper
@app.route('/process_audio', methods=['POST'])
def process_audio():
    if 'audio' not in request.files:
        return jsonify({'error': 'No audio file provided'}), 400

    audio_file = request.files['audio']
    audio_file_path = 'recorded_audio.wav'
    audio_file.save(audio_file_path)

    # Transcribe audio using Whisper
    transcription = transcribe_audio(audio_file_path)
    return jsonify({'transcription': transcription})



@app.route('/data_view', methods=['GET'])
def data_view():
    csv_file = request.args.get('csv_file', 'static/gesture_data.csv')
    gesture_data = load_csv_data(csv_file)

    df = pd.DataFrame(gesture_data, columns=['Gesture', 'Start Time', 'End Time', 'Duration'])
    gesture_counts = df['Gesture'].value_counts().reset_index()
    gesture_counts.columns = ['Gesture', 'Count']
    fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')
    html_chart = fig.to_html(full_html=False)

    return render_template('data.html', gesture_data=gesture_data, html_chart=html_chart)


import pandas as pd
from flask import render_template

@app.route('/datadiff')
def datadiff():
    # Load original and modified CSV files
    original_csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'gesture_data.csv')
    modified_csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')

    # Read the CSVs into pandas DataFrames
    original_csv = pd.read_csv(original_csv_path)
    modified_csv = pd.read_csv(modified_csv_path)

    # Render the datadiff.html page with the data for comparison
    return render_template('datadiff.html', original_csv=original_csv, modified_csv=modified_csv)


def load_csv_data(file_path):
    gesture_data = []
    with open(file_path, 'r') as csvfile:
        reader = csv.reader(csvfile)
        next(reader)
        for row in reader:
            gesture_data.append(row)
    return gesture_data

@app.route('/save_data')
def save_gesture_data():
    global capture_flag
    capture_flag = False

    # Ensure gesture data is actually populated
    print("Saving gesture data:", gesture_data_list)

    # Ensure the static directory exists
    os.makedirs('static', exist_ok=True)

    # Save data to JSON file in Label Studio-compatible format
    json_file_path = os.path.join('static', 'gesture_data_labelstudio.json')
    save_label_studio_json(gesture_data_list, json_file_path)

    # Save data to CSV file for visualization
    csv_file_path = os.path.join('static', 'gesture_data.csv')
    save_gesture_csv(gesture_data_list, csv_file_path)

    return redirect(url_for('data'))

import random  # Make sure to import the random module
import uuid  # Make sure to import uuid for unique IDs
from datetime import datetime  # Import datetime for timestamp

def generate_alphanumeric_id(length=5):
    """Generates a random alphanumeric ID."""
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))

def save_label_studio_json(gesture_data, file_path):
    current_time = datetime.utcnow().isoformat() + "Z"
    
    # Create a single task with all annotations
    annotations = {
        "id": 1,  # Task ID
        "annotations": [
            {
                "id": 1,  # Annotation ID
                "completed_by": 1,
                "result": [],
                "was_cancelled": False,
                "ground_truth": False,
                "created_at": current_time,
                "updated_at": current_time,
                "draft_created_at": current_time,
                "lead_time": sum(duration for _, _, _, duration in gesture_data),
                "prediction": {},
                "result_count": 0,
                "unique_id": str(uuid.uuid4()),
                "import_id": None,
                "last_action": None,
                "task": 1,
                "project": 25,
                "updated_by": 1,
                "parent_prediction": None,
                "parent_annotation": None,
                "last_created_by": None
            }
        ],
        "file_upload": "1212df4d-HandyLabels.MP4",
        "drafts": [],
        "predictions": [],
        "data": {
            "video_url": "/data/upload/30/030cca83-Video_1.mp4"
        },
        "meta": {},
        "created_at": current_time,
        "updated_at": current_time,
        "inner_id": 1,
        "total_annotations": 1,
        "cancelled_annotations": 0,
        "total_predictions": 0,
        "comment_count": 0,
        "unresolved_comment_count": 0,
        "last_comment_updated_at": None,
        "project": 25,
        "updated_by": 1,
        "comment_authors": []
    }

    # Add each gesture as an individual result within the annotation
    for gesture, start_time, end_time, duration in gesture_data:
        annotation_result = {
            "original_length": end_time - start_time,
            "value": {
                "start": start_time,
                "end": end_time,
                "channel": 0,
                "labels": [gesture]
            },
            "id": generate_alphanumeric_id(),  # Generate a unique 5-character alphanumeric ID for each result
            "from_name": "tricks",
            "to_name": "audio",
            "type": "labels",
            "origin": "manual"
        }
        annotations["annotations"][0]["result"].append(annotation_result)

    # Save the consolidated JSON to the file
    with open(file_path, 'w') as json_file:
        json.dump([annotations], json_file, indent=2)

    print(f"Label Studio JSON saved to: {file_path}")


def save_gesture_csv(gesture_data, file_path):
    with open(file_path, 'w', newline='') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(['Gesture', 'Start Time', 'End Time', 'Duration'])
        for gesture, start_time, end_time, duration in gesture_data:
            writer.writerow([gesture, start_time, end_time, duration])

@app.route('/data')
def data():
    gesture_data = load_csv_data()

    # Convert to DataFrame for easier manipulation
    df = pd.DataFrame(gesture_data, columns=['Gesture', 'Start Time', 'End Time', 'Duration'])

    # Count occurrences of each gesture
    gesture_counts = df['Gesture'].value_counts().reset_index()
    gesture_counts.columns = ['Gesture', 'Count']

    # Create the pie chart using Plotly
    fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')

    # Convert the plotly chart to HTML
    html_chart = fig.to_html(full_html=False)

    return render_template('data.html', gesture_data=gesture_data, html_chart=html_chart)

def load_csv_data():
    gesture_data = []
    with open('static/gesture_data.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        next(reader)  # Skip the header row
        for row in reader:
            gesture_data.append(row)
    return gesture_data

@app.route('/download_json')
def download_json():
    file_path = os.path.join('static', 'gesture_data_labelstudio.json')

    if not os.path.isfile(file_path):
        return "JSON file not found!", 404

    return send_from_directory('static', 'gesture_data_labelstudio.json', as_attachment=True)

@app.route('/download_csv')
def download_csv():
    filename = request.args.get('filename')
    if filename == 'original':
        path = os.path.join(app.config['UPLOAD_FOLDER'], 'gesture_data.csv')
    elif filename == 'updated':
        path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')
    else:
        flash('Invalid file requested')
        return redirect(url_for('edit_csv'))

    if not os.path.exists(path):
        flash('File not found!')
        return redirect(url_for('edit_csv'))

    return send_from_directory(app.config['UPLOAD_FOLDER'], os.path.basename(path), as_attachment=True)



# New route to download the modified CSV
@app.route('/download_csv_modified')
def download_csv_modified():
    file_path = os.path.join(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv')

    if not os.path.isfile(file_path):
        return "Modified CSV file not found!", 404

    return send_from_directory(app.config['UPLOAD_FOLDER'], 'modified_gesture_data.csv', as_attachment=True)


# Import Data Functionality to Visualize Imported CSV
@app.route('/import_data', methods=['GET', 'POST'])
def import_data():
    if request.method == 'POST':
        if 'file' not in request.files:
            flash('No file part')
            return redirect(request.url)
        file = request.files['file']
        if file.filename == '':
            flash('No selected file')
            return redirect(request.url)
        if file:
            filename = secure_filename(file.filename)
            file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
            file.save(file_path)
            return redirect(url_for('visualize_data', file_path=file_path))
    return render_template('import_data.html')

@app.route('/visualize_data')
def visualize_data():
    file_path = request.args.get('file_path')

    if not os.path.exists(file_path):
        return "The file could not be found.", 404

    return visualize_csv(file_path)

def visualize_csv(file_path):
    try:
        # Load gesture data from CSV and process it for visualization
        data = pd.read_csv(file_path)

        # Check if necessary columns are present
        required_columns = ['Gesture', 'Start Time', 'End Time', 'Duration']
        if not set(required_columns).issubset(data.columns):
            return f"The uploaded CSV must contain the following columns: {required_columns}", 400

        # Extract relevant columns
        gesture_df = data[required_columns]

        # Generate a pie chart for gesture distribution
        gesture_counts = gesture_df['Gesture'].value_counts().reset_index()
        gesture_counts.columns = ['Gesture', 'Count']

        # Create the pie chart using Plotly
        fig = px.pie(gesture_counts, values='Count', names='Gesture', title='Gesture Distribution')

        # Convert the plotly chart to HTML
        html_chart = fig.to_html(full_html=False)

        # Render the data.html template with the gesture data and chart
        return render_template('data.html', gesture_data=gesture_df.to_dict('records'), html_chart=html_chart)

    except Exception as e:
        return f"An error occurred while processing the file: {str(e)}", 500

if __name__ == '__main__':
    port = int(os.environ.get("PORT", 5000))
    app.run(host='0.0.0.0', port=port, debug=True)