Spaces:
No application file
No application file
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer | |
from peft import get_peft_model, LoraConfig, TaskType | |
import torch | |
model_id = "microsoft/phi-3-mini-4k-instruct" | |
dataset_path = "../0_data_gen/instruct_dataset.jsonl" | |
# Carga dataset personalizado | |
data = load_dataset("json", data_files=dataset_path) | |
# Tokenización | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def tokenize(example): | |
return tokenizer(f"<|user|>{example['instruction']}<|assistant|>{example['response']}", truncation=True, padding="max_length", max_length=512) | |
tokenized = data["train"].map(tokenize) | |
# Carga modelo + PEFT | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.05) | |
model = get_peft_model(model, peft_config) | |
# Entrenamiento | |
training_args = TrainingArguments( | |
output_dir="./model", | |
per_device_train_batch_size=2, | |
num_train_epochs=3, | |
save_total_limit=1, | |
logging_steps=10, | |
learning_rate=2e-4, | |
fp16=torch.cuda.is_available() | |
) | |
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized) | |
trainer.train() | |