Spaces:
No application file
No application file
File size: 1,263 Bytes
aabab56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from peft import get_peft_model, LoraConfig, TaskType
import torch
model_id = "microsoft/phi-3-mini-4k-instruct"
dataset_path = "../0_data_gen/instruct_dataset.jsonl"
# Carga dataset personalizado
data = load_dataset("json", data_files=dataset_path)
# Tokenización
tokenizer = AutoTokenizer.from_pretrained(model_id)
def tokenize(example):
return tokenizer(f"<|user|>{example['instruction']}<|assistant|>{example['response']}", truncation=True, padding="max_length", max_length=512)
tokenized = data["train"].map(tokenize)
# Carga modelo + PEFT
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.05)
model = get_peft_model(model, peft_config)
# Entrenamiento
training_args = TrainingArguments(
output_dir="./model",
per_device_train_batch_size=2,
num_train_epochs=3,
save_total_limit=1,
logging_steps=10,
learning_rate=2e-4,
fp16=torch.cuda.is_available()
)
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized)
trainer.train()
|