Spaces:
Running
Running
File size: 18,359 Bytes
94a65e4 32fef5a f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a 94a65e4 f36a10a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# import torch
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
# import networkx as nx
# import spacy
# import pickle
# import pandas as pd
# import google.generativeai as genai
# import json
# # Load spaCy for NER
# nlp = spacy.load("en_core_web_sm")
# # Load the trained ML model
# model_path = "./results/checkpoint-5030" # Replace with the actual path to your model
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small')
# model = AutoModelForSequenceClassification.from_pretrained(model_path)
# model.eval()
# #########################
# def setup_gemini():
# genai.configure(api_key='AIzaSyAQzWpSyWyYCM1G5f-G0ulRCQkXuY7admA')
# model = genai.GenerativeModel('gemini-pro')
# return model
# #########################
# # Load the knowledge graph
# graph_path = "./models/knowledge_graph.pkl" # Replace with the actual path to your knowledge graph
# with open(graph_path, 'rb') as f:
# graph_data = pickle.load(f)
# knowledge_graph = nx.DiGraph()
# knowledge_graph.add_nodes_from(graph_data['nodes'].items())
# for u, edges in graph_data['edges'].items():
# for v, data in edges.items():
# knowledge_graph.add_edge(u, v, **data)
# def predict_with_model(text):
# """Predict whether the news is real or fake using the ML model."""
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
# with torch.no_grad():
# outputs = model(**inputs)
# probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# predicted_label = torch.argmax(probabilities, dim=-1).item()
# return "FAKE" if predicted_label == 1 else "REAL"
# def update_knowledge_graph(text, is_real):
# """Update the knowledge graph with the new article."""
# entities = extract_entities(text)
# for entity, entity_type in entities:
# if not knowledge_graph.has_node(entity):
# knowledge_graph.add_node(
# entity,
# type=entity_type,
# real_count=1 if is_real else 0,
# fake_count=0 if is_real else 1
# )
# else:
# if is_real:
# knowledge_graph.nodes[entity]['real_count'] += 1
# else:
# knowledge_graph.nodes[entity]['fake_count'] += 1
# for i, (entity1, _) in enumerate(entities):
# for entity2, _ in entities[i+1:]:
# if not knowledge_graph.has_edge(entity1, entity2):
# knowledge_graph.add_edge(
# entity1,
# entity2,
# weight=1,
# is_real=is_real
# )
# else:
# knowledge_graph[entity1][entity2]['weight'] += 1
# def extract_entities(text):
# """Extract named entities from text using spaCy."""
# doc = nlp(text)
# entities = [(ent.text, ent.label_) for ent in doc.ents]
# return entities
# def predict_with_knowledge_graph(text):
# """Predict whether the news is real or fake using the knowledge graph."""
# entities = extract_entities(text)
# real_score = 0
# fake_score = 0
# for entity, _ in entities:
# if knowledge_graph.has_node(entity):
# real_count = knowledge_graph.nodes[entity].get('real_count', 0)
# fake_count = knowledge_graph.nodes[entity].get('fake_count', 0)
# total = real_count + fake_count
# if total > 0:
# real_score += real_count / total
# fake_score += fake_count / total
# if real_score > fake_score:
# return "REAL"
# else:
# return "FAKE"
# def predict_news(text):
# """Predict whether the news is real or fake using both the ML model and the knowledge graph."""
# # Predict with the ML model
# ml_prediction = predict_with_model(text)
# is_real = ml_prediction == "REAL"
# # Update the knowledge graph
# update_knowledge_graph(text, is_real)
# # Predict with the knowledge graph
# kg_prediction = predict_with_knowledge_graph(text)
# # Combine predictions (for simplicity, we use the ML model's prediction here)
# # You can enhance this by combining the scores from both predictions
# return ml_prediction if ml_prediction == kg_prediction else "UNCERTAIN"
# #########################
# # def analyze_content_gemini(model, text):
# # prompt = f"""Analyze this news text and provide results in the following JSON-like format:
# # TEXT: {text}
# # Please provide analysis in these specific sections:
# # 1. GEMINI ANALYSIS:
# # - Predicted Classification: [Real/Fake]
# # - Confidence Score: [0-100%]
# # - Reasoning: [Key points for classification]
# # 2. TEXT CLASSIFICATION:
# # - Content category/topic
# # - Writing style: [Formal/Informal/Clickbait]
# # - Target audience
# # - Content type: [news/opinion/editorial]
# # 3. SENTIMENT ANALYSIS:
# # - Primary emotion
# # - Emotional intensity (1-10)
# # - Sensationalism Level: [High/Medium/Low]
# # - Bias Indicators: [List if any]
# # - Tone: (formal/informal), [Professional/Emotional/Neutral]
# # - Key emotional triggers
# # 4. ENTITY RECOGNITION:
# # - Source Credibility: [High/Medium/Low]
# # - People mentioned
# # - Organizations
# # - Locations
# # - Dates/Time references
# # - Key numbers/statistics
# # 5. CONTEXT EXTRACTION:
# # - Main narrative/story
# # - Supporting elements
# # - Key claims
# # - Narrative structure
# # 6. FACT CHECKING:
# # - Verifiable Claims: [List main claims]
# # - Evidence Present: [Yes/No]
# # - Fact Check Score: [0-100%]
# # Format the response clearly with distinct sections."""
# # response = model.generate_content(prompt)
# # return response.text
# def analyze_content_gemini(model, text):
# prompt = f"""Analyze this news text and return a JSON object with the following structure:
# {{
# "gemini_analysis": {{
# "predicted_classification": "Real or Fake",
# "confidence_score": "0-100",
# "reasoning": ["point1", "point2"]
# }},
# "text_classification": {{
# "category": "",
# "writing_style": "Formal/Informal/Clickbait",
# "target_audience": "",
# "content_type": "news/opinion/editorial"
# }},
# "sentiment_analysis": {{
# "primary_emotion": "",
# "emotional_intensity": "1-10",
# "sensationalism_level": "High/Medium/Low",
# "bias_indicators": ["bias1", "bias2"],
# "tone": {{"formality": "formal/informal", "style": "Professional/Emotional/Neutral"}},
# "emotional_triggers": ["trigger1", "trigger2"]
# }},
# "entity_recognition": {{
# "source_credibility": "High/Medium/Low",
# "people": ["person1", "person2"],
# "organizations": ["org1", "org2"],
# "locations": ["location1", "location2"],
# "dates": ["date1", "date2"],
# "statistics": ["stat1", "stat2"]
# }},
# "context": {{
# "main_narrative": "",
# "supporting_elements": ["element1", "element2"],
# "key_claims": ["claim1", "claim2"],
# "narrative_structure": ""
# }},
# "fact_checking": {{
# "verifiable_claims": ["claim1", "claim2"],
# "evidence_present": "Yes/No",
# "fact_check_score": "0-100"
# }}
# }}
# Analyze this text and return only the JSON response: {text}"""
# response = model.generate_content(prompt)
# # return json.loads(response.text)
# # Add error handling and response cleaning
# try:
# # Clean the response text to ensure it's valid JSON
# cleaned_text = response.text.strip()
# if cleaned_text.startswith('```json'):
# cleaned_text = cleaned_text[7:-3] # Remove ```json and ``` markers
# return json.loads(cleaned_text)
# except json.JSONDecodeError:
# # Return a default structured response if JSON parsing fails
# return {
# "gemini_analysis": {
# "predicted_classification": "UNCERTAIN",
# "confidence_score": "50",
# "reasoning": ["Analysis failed to generate valid JSON"]
# }
# }
# def clean_gemini_output(text):
# """Remove markdown formatting from Gemini output"""
# text = text.replace('##', '')
# text = text.replace('**', '')
# return text
# def get_gemini_analysis(text):
# """Get detailed content analysis from Gemini."""
# gemini_model = setup_gemini()
# gemini_analysis = analyze_content_gemini(gemini_model, text)
# # cleaned_analysis = clean_gemini_output(gemini_analysis)
# # return cleaned_analysis
# return gemini_analysis
# #########################
# def main():
# print("Welcome to the News Classifier!")
# print("Enter your news text below. Type 'Exit' to quit.")
# while True:
# news_text = input("\nEnter news text: ")
# if news_text.lower() == 'exit':
# print("Thank you for using the News Classifier!")
# return
# # First get ML and Knowledge Graph prediction
# prediction = predict_news(news_text)
# print(f"\nML and Knowledge Graph Analysis: {prediction}")
# # Then get Gemini analysis
# print("\n=== Detailed Gemini Analysis ===")
# gemini_result = get_gemini_analysis(news_text)
# print(gemini_result)
# if __name__ == "__main__":
# main()
import streamlit as st
# Page config
st.set_page_config(
page_title="Nexus NLP News Classifier",
page_icon="π°",
layout="wide"
)
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, DebertaV2Tokenizer
import networkx as nx
import spacy
import pickle
import google.generativeai as genai
import json
import os
import dotenv
# Load environment variables
dotenv.load_dotenv()
# Load models and resources
@st.cache_resource
def load_nlp():
return spacy.load("en_core_web_sm")
@st.cache_resource
def load_model():
model_path = "./results/checkpoint-753"
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model.eval()
return tokenizer, model
@st.cache_resource
def load_knowledge_graph():
graph_path = "./knowledge_graph_final.pkl"
with open(graph_path, 'rb') as f:
graph_data = pickle.load(f)
knowledge_graph = nx.DiGraph()
knowledge_graph.add_nodes_from(graph_data['nodes'].items())
for u, edges in graph_data['edges'].items():
for v, data in edges.items():
knowledge_graph.add_edge(u, v, **data)
return knowledge_graph
def setup_gemini():
genai.configure(api_key=os.getenv("GEMINI_API"))
model = genai.GenerativeModel('gemini-pro')
return model
# Initialize resources
nlp = load_nlp()
tokenizer, model = load_model()
knowledge_graph = load_knowledge_graph()
def predict_with_model(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_label = torch.argmax(probabilities, dim=-1).item()
confidence = probabilities[0][predicted_label].item() * 100
return "FAKE" if predicted_label == 1 else "REAL", confidence
def extract_entities(text):
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
return entities
def update_knowledge_graph(text, is_real):
entities = extract_entities(text)
for entity, entity_type in entities:
if not knowledge_graph.has_node(entity):
knowledge_graph.add_node(
entity,
type=entity_type,
real_count=1 if is_real else 0,
fake_count=0 if is_real else 1
)
else:
if is_real:
knowledge_graph.nodes[entity]['real_count'] += 1
else:
knowledge_graph.nodes[entity]['fake_count'] += 1
for i, (entity1, _) in enumerate(entities):
for entity2, _ in entities[i+1:]:
if not knowledge_graph.has_edge(entity1, entity2):
knowledge_graph.add_edge(
entity1,
entity2,
weight=1,
is_real=is_real
)
else:
knowledge_graph[entity1][entity2]['weight'] += 1
def predict_with_knowledge_graph(text):
entities = extract_entities(text)
real_score = 0
fake_score = 0
for entity, _ in entities:
if knowledge_graph.has_node(entity):
real_count = knowledge_graph.nodes[entity].get('real_count', 0)
fake_count = knowledge_graph.nodes[entity].get('fake_count', 0)
total = real_count + fake_count
if total > 0:
real_score += real_count / total
fake_score += fake_count / total
total_score = real_score + fake_score
if total_score == 0:
return "UNCERTAIN", 50.0
if real_score > fake_score:
confidence = (real_score / total_score) * 100
return "REAL", confidence
else:
confidence = (fake_score / total_score) * 100
return "FAKE", confidence
def analyze_content_gemini(model, text):
prompt = f"""Analyze this news text and return a JSON object with the following structure:
{{
"gemini_analysis": {{
"predicted_classification": "Real or Fake",
"confidence_score": "0-100",
"reasoning": ["point1", "point2"]
}},
"text_classification": {{
"category": "",
"writing_style": "Formal/Informal/Clickbait",
"target_audience": "",
"content_type": "news/opinion/editorial"
}},
"sentiment_analysis": {{
"primary_emotion": "",
"emotional_intensity": "1-10",
"sensationalism_level": "High/Medium/Low",
"bias_indicators": ["bias1", "bias2"],
"tone": {{"formality": "formal/informal", "style": "Professional/Emotional/Neutral"}},
"emotional_triggers": ["trigger1", "trigger2"]
}},
"entity_recognition": {{
"source_credibility": "High/Medium/Low",
"people": ["person1", "person2"],
"organizations": ["org1", "org2"],
"locations": ["location1", "location2"],
"dates": ["date1", "date2"],
"statistics": ["stat1", "stat2"]
}},
"context": {{
"main_narrative": "",
"supporting_elements": ["element1", "element2"],
"key_claims": ["claim1", "claim2"],
"narrative_structure": ""
}},
"fact_checking": {{
"verifiable_claims": ["claim1", "claim2"],
"evidence_present": "Yes/No",
"fact_check_score": "0-100"
}}
}}
Analyze this text and return only the JSON response: {text}"""
response = model.generate_content(prompt)
try:
cleaned_text = response.text.strip()
if cleaned_text.startswith('```json'):
cleaned_text = cleaned_text[7:-3]
return json.loads(cleaned_text)
except json.JSONDecodeError:
return {
"gemini_analysis": {
"predicted_classification": "UNCERTAIN",
"confidence_score": "50",
"reasoning": ["Analysis failed to generate valid JSON"]
}
}
def main():
st.title("π° Nexus NLP News Classifier")
st.write("Enter news text below to analyze its authenticity")
# Query parameters for API functionality
query_params = st.query_params
if "text" in query_params:
text_input = query_params["text"][0]
ml_prediction, ml_confidence = predict_with_model(text_input)
st.json({"prediction": ml_prediction, "confidence": ml_confidence})
return
# Regular UI
news_text = st.text_area("News Text", height=200)
if st.button("Analyze"):
if news_text:
with st.spinner("Analyzing..."):
# Get all predictions
ml_prediction, ml_confidence = predict_with_model(news_text)
kg_prediction, kg_confidence = predict_with_knowledge_graph(news_text)
update_knowledge_graph(news_text, ml_prediction == "REAL")
gemini_model = setup_gemini()
gemini_result = analyze_content_gemini(gemini_model, news_text)
# Display results
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("ML Model Analysis")
st.metric("Prediction", ml_prediction)
st.metric("Confidence", f"{ml_confidence:.2f}%")
with col2:
st.subheader("Knowledge Graph Analysis")
st.metric("Prediction", kg_prediction)
st.metric("Confidence", f"{kg_confidence:.2f}%")
with col3:
st.subheader("Gemini Analysis")
gemini_pred = gemini_result["gemini_analysis"]["predicted_classification"]
gemini_conf = gemini_result["gemini_analysis"]["confidence_score"]
st.metric("Prediction", gemini_pred)
st.metric("Confidence", f"{gemini_conf}%")
with st.expander("View Detailed Analysis"):
st.json(gemini_result)
with st.expander("Named Entities"):
entities = extract_entities(news_text)
st.write(entities)
else:
st.warning("Please enter some text to analyze")
if __name__ == "__main__":
main()
|