Spaces:
Running
Running
Krish Patel
commited on
Commit
·
94a65e4
1
Parent(s):
898162d
Added gemini analysis and knowledge graph
Browse files- .gitignore +1 -0
- app.py +90 -196
- final.py +418 -48
- knowledge_graph_final.pkl +3 -0
- prev_final.py +142 -0
- test.py +48 -11
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
# import streamlit as st
|
2 |
# import torch
|
3 |
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
4 |
|
5 |
# # Load the model and tokenizer
|
6 |
-
# # @st.cache_resource
|
7 |
-
# # def load_model():
|
8 |
-
# # tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small')
|
9 |
-
# # model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
10 |
-
# # model.eval()
|
11 |
-
# # return tokenizer, model
|
12 |
# @st.cache_resource
|
13 |
# def load_model():
|
14 |
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
@@ -25,202 +20,101 @@
|
|
25 |
# confidence = probabilities[0][predicted_label].item()
|
26 |
# return "FAKE" if predicted_label == 1 else "REAL", confidence
|
27 |
|
28 |
-
#
|
29 |
-
#
|
30 |
-
|
31 |
-
#
|
|
|
|
|
|
|
32 |
# tokenizer, model = load_model()
|
|
|
33 |
|
34 |
-
# #
|
35 |
-
#
|
36 |
-
|
37 |
-
# if st.button("Classify"):
|
38 |
-
# if news_text:
|
39 |
-
# with st.spinner('Analyzing...'):
|
40 |
-
# prediction, confidence = predict_news(news_text, tokenizer, model)
|
41 |
-
|
42 |
-
# # Display results
|
43 |
-
# if prediction == "FAKE":
|
44 |
-
# st.error(f"⚠️ {prediction} NEWS")
|
45 |
-
# else:
|
46 |
-
# st.success(f"✅ {prediction} NEWS")
|
47 |
-
|
48 |
-
# st.info(f"Confidence: {confidence*100:.2f}%")
|
49 |
-
|
50 |
-
# if __name__ == "__main__":
|
51 |
-
# main()
|
52 |
-
|
53 |
-
|
54 |
-
# # import streamlit as st
|
55 |
-
# # import torch
|
56 |
-
# # from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
57 |
-
# # from fastapi import FastAPI, Request
|
58 |
-
# # from pydantic import BaseModel
|
59 |
-
# # from threading import Thread
|
60 |
-
# # from streamlit.web import cli
|
61 |
-
|
62 |
-
# # # FastAPI app
|
63 |
-
# # api_app = FastAPI()
|
64 |
-
|
65 |
-
# # # Load the model and tokenizer
|
66 |
-
# # @st.cache_resource
|
67 |
-
# # def load_model():
|
68 |
-
# # tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
69 |
-
# # model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
70 |
-
# # model.eval()
|
71 |
-
# # return tokenizer, model
|
72 |
-
|
73 |
-
# # # Prediction function
|
74 |
-
# # def predict_news(text, tokenizer, model):
|
75 |
-
# # inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
76 |
-
# # with torch.no_grad():
|
77 |
-
# # outputs = model(**inputs)
|
78 |
-
# # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
79 |
-
# # predicted_label = torch.argmax(probabilities, dim=-1).item()
|
80 |
-
# # confidence = probabilities[0][predicted_label].item()
|
81 |
-
# # return "FAKE" if predicted_label == 1 else "REAL", confidence
|
82 |
-
|
83 |
-
# # # FastAPI request model
|
84 |
-
# # class NewsInput(BaseModel):
|
85 |
-
# # text: str
|
86 |
-
|
87 |
-
# # # FastAPI route for POST requests
|
88 |
-
# # @api_app.post("/classify")
|
89 |
-
# # async def classify_news(data: NewsInput):
|
90 |
-
# # tokenizer, model = load_model()
|
91 |
-
# # prediction, confidence = predict_news(data.text, tokenizer, model)
|
92 |
-
# # return {
|
93 |
-
# # "prediction": prediction,
|
94 |
-
# # "confidence": f"{confidence*100:.2f}%"
|
95 |
-
# # }
|
96 |
-
|
97 |
-
# # # Streamlit app
|
98 |
-
# # def run_streamlit():
|
99 |
-
# # def main():
|
100 |
-
# # st.title("News Classifier")
|
101 |
-
|
102 |
-
# # # Load model
|
103 |
-
# # tokenizer, model = load_model()
|
104 |
-
|
105 |
-
# # # Text input
|
106 |
-
# # news_text = st.text_area("Enter news text to analyze:", height=200)
|
107 |
-
|
108 |
-
# # if st.button("Classify"):
|
109 |
-
# # if news_text:
|
110 |
-
# # with st.spinner('Analyzing...'):
|
111 |
-
# # prediction, confidence = predict_news(news_text, tokenizer, model)
|
112 |
-
|
113 |
-
# # # Display results
|
114 |
-
# # if prediction == "FAKE":
|
115 |
-
# # st.error(f"⚠️ {prediction} NEWS")
|
116 |
-
# # else:
|
117 |
-
# # st.success(f"✅ {prediction} NEWS")
|
118 |
-
|
119 |
-
# # st.info(f"Confidence: {confidence*100:.2f}%")
|
120 |
-
|
121 |
-
# # main()
|
122 |
-
|
123 |
-
# # # Threaded execution for FastAPI and Streamlit
|
124 |
-
# # def start_fastapi():
|
125 |
-
# # import uvicorn
|
126 |
-
# # uvicorn.run(api_app, host="0.0.0.0", port=8502)
|
127 |
-
|
128 |
-
# # if __name__ == "__main__":
|
129 |
-
# # fastapi_thread = Thread(target=start_fastapi, daemon=True)
|
130 |
-
# # fastapi_thread.start()
|
131 |
-
|
132 |
-
# # # Start Streamlit
|
133 |
-
# # cli.main()
|
134 |
-
|
135 |
-
# # # from fastapi import FastAPI, HTTPException
|
136 |
-
# # # from pydantic import BaseModel
|
137 |
-
# # # from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
138 |
-
# # # import torch
|
139 |
-
|
140 |
-
# # # from fastapi.middleware.cors import CORSMiddleware
|
141 |
-
|
142 |
-
|
143 |
-
# # # # Define the FastAPI app
|
144 |
-
# # # app = FastAPI()
|
145 |
-
|
146 |
-
# # # app.add_middleware(
|
147 |
-
# # # CORSMiddleware,
|
148 |
-
# # # allow_origins=["*"], # Update with your frontend's URL for security
|
149 |
-
# # # allow_credentials=True,
|
150 |
-
# # # allow_methods=["*"],
|
151 |
-
# # # allow_headers=["*"],
|
152 |
-
# # # )
|
153 |
-
# # # # Define the input data schema
|
154 |
-
# # # class InputText(BaseModel):
|
155 |
-
# # # text: str
|
156 |
-
|
157 |
-
# # # # Load the model and tokenizer (ensure these paths are correct in your Space)
|
158 |
-
# # # tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
159 |
-
# # # model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
160 |
-
# # # model.eval()
|
161 |
-
|
162 |
-
# # # # Prediction function
|
163 |
-
# # # def predict_news(text: str):
|
164 |
-
# # # inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
165 |
-
# # # with torch.no_grad():
|
166 |
-
# # # outputs = model(**inputs)
|
167 |
-
# # # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
168 |
-
# # # predicted_label = torch.argmax(probabilities, dim=-1).item()
|
169 |
-
# # # confidence = probabilities[0][predicted_label].item()
|
170 |
-
# # # return {
|
171 |
-
# # # "prediction": "FAKE" if predicted_label == 1 else "REAL",
|
172 |
-
# # # "confidence": round(confidence * 100, 2) # Return confidence as a percentage
|
173 |
-
# # # }
|
174 |
-
|
175 |
-
# # # # Define the POST endpoint
|
176 |
-
# # # @app.post("/predict")
|
177 |
-
# # # async def classify_news(input_text: InputText):
|
178 |
-
# # # try:
|
179 |
-
# # # result = predict_news(input_text.text)
|
180 |
-
# # # return result
|
181 |
-
# # # except Exception as e:
|
182 |
-
# # # raise HTTPException(status_code=500, detail=str(e))
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
import streamlit as st
|
186 |
-
import
|
187 |
-
|
188 |
-
import json
|
189 |
|
190 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
@st.cache_resource
|
192 |
-
def
|
193 |
-
tokenizer =
|
194 |
-
|
195 |
-
model
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
200 |
-
with torch.no_grad():
|
201 |
-
outputs = model(**inputs)
|
202 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
203 |
-
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
204 |
-
confidence = probabilities[0][predicted_label].item()
|
205 |
-
return "FAKE" if predicted_label == 1 else "REAL", confidence
|
206 |
|
207 |
# Streamlit UI
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import streamlit as st
|
2 |
# import torch
|
3 |
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
# import json
|
5 |
|
6 |
# # Load the model and tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# @st.cache_resource
|
8 |
# def load_model():
|
9 |
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
|
|
20 |
# confidence = probabilities[0][predicted_label].item()
|
21 |
# return "FAKE" if predicted_label == 1 else "REAL", confidence
|
22 |
|
23 |
+
# # Streamlit UI
|
24 |
+
# st.title("News Classifier API")
|
25 |
+
|
26 |
+
# # If running as an API, get the request from query parameters
|
27 |
+
# query_params = st.query_params
|
28 |
+
# if "text" in query_params:
|
29 |
+
# text_input = query_params["text"][0] # Get text input from URL query
|
30 |
# tokenizer, model = load_model()
|
31 |
+
# prediction, confidence = predict_news(text_input, tokenizer, model)
|
32 |
|
33 |
+
# # Return JSON response
|
34 |
+
# st.json({"prediction": prediction, "confidence": confidence})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# # If running in UI mode, show text input
|
37 |
+
# else:
|
38 |
+
# text_input = st.text_area("Enter news text:")
|
39 |
+
# if st.button("Classify"):
|
40 |
+
# tokenizer, model = load_model()
|
41 |
+
# prediction, confidence = predict_news(text_input, tokenizer, model)
|
42 |
+
# st.write(f"Prediction: {prediction} (Confidence: {confidence*100:.2f}%)")
|
43 |
|
44 |
import streamlit as st
|
45 |
+
from final import *
|
46 |
+
import pandas as pd
|
|
|
47 |
|
48 |
+
# Page configuration
|
49 |
+
st.set_page_config(
|
50 |
+
page_title="Nexus NLP News Classifier",
|
51 |
+
page_icon="📰",
|
52 |
+
layout="wide"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Cache model loading
|
56 |
@st.cache_resource
|
57 |
+
def initialize_models():
|
58 |
+
nlp, tokenizer, model = load_models()
|
59 |
+
knowledge_graph = load_knowledge_graph()
|
60 |
+
return nlp, tokenizer, model, knowledge_graph
|
61 |
+
|
62 |
+
# Initialize all models
|
63 |
+
nlp, tokenizer, model, knowledge_graph = initialize_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Streamlit UI
|
66 |
+
def main():
|
67 |
+
st.title("📰 Nexus NLP News Classifier")
|
68 |
+
st.write("Enter news text below to analyze its authenticity")
|
69 |
+
|
70 |
+
# Text input area
|
71 |
+
news_text = st.text_area("News Text", height=200)
|
72 |
+
|
73 |
+
if st.button("Analyze"):
|
74 |
+
if news_text:
|
75 |
+
with st.spinner("Analyzing..."):
|
76 |
+
# Get predictions from all models
|
77 |
+
ml_prediction, ml_confidence = predict_with_model(news_text, tokenizer, model)
|
78 |
+
kg_prediction, kg_confidence = predict_with_knowledge_graph(text, knowledge_graph, nlp)
|
79 |
+
|
80 |
+
# Update knowledge graph
|
81 |
+
update_knowledge_graph(news_text, ml_prediction == "REAL", knowledge_graph, nlp)
|
82 |
+
|
83 |
+
# Get Gemini analysis
|
84 |
+
gemini_model = setup_gemini()
|
85 |
+
gemini_result = analyze_content_gemini(gemini_model, news_text)
|
86 |
+
|
87 |
+
# Display results in columns
|
88 |
+
col1, col2, col3 = st.columns(3)
|
89 |
+
|
90 |
+
with col1:
|
91 |
+
st.subheader("ML Model Analysis")
|
92 |
+
st.metric("Prediction", ml_prediction)
|
93 |
+
st.metric("Confidence", f"{ml_confidence:.2f}%")
|
94 |
+
|
95 |
+
with col2:
|
96 |
+
st.subheader("Knowledge Graph Analysis")
|
97 |
+
st.metric("Prediction", kg_prediction)
|
98 |
+
st.metric("Confidence", f"{kg_confidence:.2f}%")
|
99 |
+
|
100 |
+
with col3:
|
101 |
+
st.subheader("Gemini Analysis")
|
102 |
+
gemini_pred = gemini_result["gemini_analysis"]["predicted_classification"]
|
103 |
+
gemini_conf = gemini_result["gemini_analysis"]["confidence_score"]
|
104 |
+
st.metric("Prediction", gemini_pred)
|
105 |
+
st.metric("Confidence", f"{gemini_conf}%")
|
106 |
+
|
107 |
+
# Detailed analysis sections
|
108 |
+
with st.expander("View Detailed Analysis"):
|
109 |
+
st.json(gemini_result)
|
110 |
+
|
111 |
+
with st.expander("Named Entities"):
|
112 |
+
entities = extract_entities(news_text, nlp)
|
113 |
+
df = pd.DataFrame(entities, columns=["Entity", "Type"])
|
114 |
+
st.dataframe(df)
|
115 |
+
|
116 |
+
else:
|
117 |
+
st.warning("Please enter some text to analyze")
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
main()
|
final.py
CHANGED
@@ -1,50 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
3 |
import spacy
|
|
|
4 |
import google.generativeai as genai
|
5 |
import json
|
6 |
import os
|
7 |
import dotenv
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
dotenv.load_dotenv()
|
10 |
|
11 |
-
# Load
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def setup_gemini():
|
24 |
genai.configure(api_key=os.getenv("GEMINI_API"))
|
25 |
model = genai.GenerativeModel('gemini-pro')
|
26 |
return model
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
def predict_with_model(text):
|
29 |
-
"""Predict whether the news is real or fake using the ML model."""
|
30 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
31 |
with torch.no_grad():
|
32 |
outputs = model(**inputs)
|
33 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
34 |
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
35 |
-
|
|
|
36 |
|
37 |
def extract_entities(text):
|
38 |
-
"""Extract named entities from text using spaCy."""
|
39 |
doc = nlp(text)
|
40 |
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
41 |
return entities
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def analyze_content_gemini(model, text):
|
50 |
prompt = f"""Analyze this news text and return a JSON object with the following structure:
|
@@ -106,37 +452,61 @@ def analyze_content_gemini(model, text):
|
|
106 |
}
|
107 |
}
|
108 |
|
109 |
-
def
|
110 |
-
"
|
111 |
-
|
112 |
-
text = text.replace('**', '')
|
113 |
-
return text
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
main()
|
|
|
1 |
+
# import torch
|
2 |
+
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
# import networkx as nx
|
4 |
+
# import spacy
|
5 |
+
# import pickle
|
6 |
+
# import pandas as pd
|
7 |
+
# import google.generativeai as genai
|
8 |
+
# import json
|
9 |
+
|
10 |
+
# # Load spaCy for NER
|
11 |
+
# nlp = spacy.load("en_core_web_sm")
|
12 |
+
|
13 |
+
# # Load the trained ML model
|
14 |
+
# model_path = "./results/checkpoint-5030" # Replace with the actual path to your model
|
15 |
+
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small')
|
16 |
+
# model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
17 |
+
# model.eval()
|
18 |
+
|
19 |
+
# #########################
|
20 |
+
# def setup_gemini():
|
21 |
+
# genai.configure(api_key='AIzaSyAQzWpSyWyYCM1G5f-G0ulRCQkXuY7admA')
|
22 |
+
# model = genai.GenerativeModel('gemini-pro')
|
23 |
+
# return model
|
24 |
+
# #########################
|
25 |
+
|
26 |
+
# # Load the knowledge graph
|
27 |
+
# graph_path = "./models/knowledge_graph.pkl" # Replace with the actual path to your knowledge graph
|
28 |
+
# with open(graph_path, 'rb') as f:
|
29 |
+
# graph_data = pickle.load(f)
|
30 |
+
|
31 |
+
# knowledge_graph = nx.DiGraph()
|
32 |
+
# knowledge_graph.add_nodes_from(graph_data['nodes'].items())
|
33 |
+
# for u, edges in graph_data['edges'].items():
|
34 |
+
# for v, data in edges.items():
|
35 |
+
# knowledge_graph.add_edge(u, v, **data)
|
36 |
+
|
37 |
+
# def predict_with_model(text):
|
38 |
+
# """Predict whether the news is real or fake using the ML model."""
|
39 |
+
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
40 |
+
# with torch.no_grad():
|
41 |
+
# outputs = model(**inputs)
|
42 |
+
# probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
43 |
+
# predicted_label = torch.argmax(probabilities, dim=-1).item()
|
44 |
+
# return "FAKE" if predicted_label == 1 else "REAL"
|
45 |
+
|
46 |
+
# def update_knowledge_graph(text, is_real):
|
47 |
+
# """Update the knowledge graph with the new article."""
|
48 |
+
# entities = extract_entities(text)
|
49 |
+
# for entity, entity_type in entities:
|
50 |
+
# if not knowledge_graph.has_node(entity):
|
51 |
+
# knowledge_graph.add_node(
|
52 |
+
# entity,
|
53 |
+
# type=entity_type,
|
54 |
+
# real_count=1 if is_real else 0,
|
55 |
+
# fake_count=0 if is_real else 1
|
56 |
+
# )
|
57 |
+
# else:
|
58 |
+
# if is_real:
|
59 |
+
# knowledge_graph.nodes[entity]['real_count'] += 1
|
60 |
+
# else:
|
61 |
+
# knowledge_graph.nodes[entity]['fake_count'] += 1
|
62 |
+
|
63 |
+
# for i, (entity1, _) in enumerate(entities):
|
64 |
+
# for entity2, _ in entities[i+1:]:
|
65 |
+
# if not knowledge_graph.has_edge(entity1, entity2):
|
66 |
+
# knowledge_graph.add_edge(
|
67 |
+
# entity1,
|
68 |
+
# entity2,
|
69 |
+
# weight=1,
|
70 |
+
# is_real=is_real
|
71 |
+
# )
|
72 |
+
# else:
|
73 |
+
# knowledge_graph[entity1][entity2]['weight'] += 1
|
74 |
+
|
75 |
+
# def extract_entities(text):
|
76 |
+
# """Extract named entities from text using spaCy."""
|
77 |
+
# doc = nlp(text)
|
78 |
+
# entities = [(ent.text, ent.label_) for ent in doc.ents]
|
79 |
+
# return entities
|
80 |
+
|
81 |
+
# def predict_with_knowledge_graph(text):
|
82 |
+
# """Predict whether the news is real or fake using the knowledge graph."""
|
83 |
+
# entities = extract_entities(text)
|
84 |
+
# real_score = 0
|
85 |
+
# fake_score = 0
|
86 |
+
|
87 |
+
# for entity, _ in entities:
|
88 |
+
# if knowledge_graph.has_node(entity):
|
89 |
+
# real_count = knowledge_graph.nodes[entity].get('real_count', 0)
|
90 |
+
# fake_count = knowledge_graph.nodes[entity].get('fake_count', 0)
|
91 |
+
# total = real_count + fake_count
|
92 |
+
# if total > 0:
|
93 |
+
# real_score += real_count / total
|
94 |
+
# fake_score += fake_count / total
|
95 |
+
|
96 |
+
# if real_score > fake_score:
|
97 |
+
# return "REAL"
|
98 |
+
# else:
|
99 |
+
# return "FAKE"
|
100 |
+
|
101 |
+
# def predict_news(text):
|
102 |
+
# """Predict whether the news is real or fake using both the ML model and the knowledge graph."""
|
103 |
+
# # Predict with the ML model
|
104 |
+
# ml_prediction = predict_with_model(text)
|
105 |
+
# is_real = ml_prediction == "REAL"
|
106 |
+
|
107 |
+
# # Update the knowledge graph
|
108 |
+
# update_knowledge_graph(text, is_real)
|
109 |
+
|
110 |
+
# # Predict with the knowledge graph
|
111 |
+
# kg_prediction = predict_with_knowledge_graph(text)
|
112 |
+
|
113 |
+
# # Combine predictions (for simplicity, we use the ML model's prediction here)
|
114 |
+
# # You can enhance this by combining the scores from both predictions
|
115 |
+
# return ml_prediction if ml_prediction == kg_prediction else "UNCERTAIN"
|
116 |
+
|
117 |
+
# #########################
|
118 |
+
# # def analyze_content_gemini(model, text):
|
119 |
+
# # prompt = f"""Analyze this news text and provide results in the following JSON-like format:
|
120 |
+
|
121 |
+
# # TEXT: {text}
|
122 |
+
|
123 |
+
# # Please provide analysis in these specific sections:
|
124 |
+
|
125 |
+
# # 1. GEMINI ANALYSIS:
|
126 |
+
# # - Predicted Classification: [Real/Fake]
|
127 |
+
# # - Confidence Score: [0-100%]
|
128 |
+
# # - Reasoning: [Key points for classification]
|
129 |
+
|
130 |
+
# # 2. TEXT CLASSIFICATION:
|
131 |
+
# # - Content category/topic
|
132 |
+
# # - Writing style: [Formal/Informal/Clickbait]
|
133 |
+
# # - Target audience
|
134 |
+
# # - Content type: [news/opinion/editorial]
|
135 |
+
|
136 |
+
# # 3. SENTIMENT ANALYSIS:
|
137 |
+
# # - Primary emotion
|
138 |
+
# # - Emotional intensity (1-10)
|
139 |
+
# # - Sensationalism Level: [High/Medium/Low]
|
140 |
+
# # - Bias Indicators: [List if any]
|
141 |
+
# # - Tone: (formal/informal), [Professional/Emotional/Neutral]
|
142 |
+
# # - Key emotional triggers
|
143 |
+
|
144 |
+
# # 4. ENTITY RECOGNITION:
|
145 |
+
# # - Source Credibility: [High/Medium/Low]
|
146 |
+
# # - People mentioned
|
147 |
+
# # - Organizations
|
148 |
+
# # - Locations
|
149 |
+
# # - Dates/Time references
|
150 |
+
# # - Key numbers/statistics
|
151 |
+
|
152 |
+
# # 5. CONTEXT EXTRACTION:
|
153 |
+
# # - Main narrative/story
|
154 |
+
# # - Supporting elements
|
155 |
+
# # - Key claims
|
156 |
+
# # - Narrative structure
|
157 |
+
|
158 |
+
# # 6. FACT CHECKING:
|
159 |
+
# # - Verifiable Claims: [List main claims]
|
160 |
+
# # - Evidence Present: [Yes/No]
|
161 |
+
# # - Fact Check Score: [0-100%]
|
162 |
+
|
163 |
+
# # Format the response clearly with distinct sections."""
|
164 |
+
|
165 |
+
# # response = model.generate_content(prompt)
|
166 |
+
# # return response.text
|
167 |
+
|
168 |
+
# def analyze_content_gemini(model, text):
|
169 |
+
# prompt = f"""Analyze this news text and return a JSON object with the following structure:
|
170 |
+
# {{
|
171 |
+
# "gemini_analysis": {{
|
172 |
+
# "predicted_classification": "Real or Fake",
|
173 |
+
# "confidence_score": "0-100",
|
174 |
+
# "reasoning": ["point1", "point2"]
|
175 |
+
# }},
|
176 |
+
# "text_classification": {{
|
177 |
+
# "category": "",
|
178 |
+
# "writing_style": "Formal/Informal/Clickbait",
|
179 |
+
# "target_audience": "",
|
180 |
+
# "content_type": "news/opinion/editorial"
|
181 |
+
# }},
|
182 |
+
# "sentiment_analysis": {{
|
183 |
+
# "primary_emotion": "",
|
184 |
+
# "emotional_intensity": "1-10",
|
185 |
+
# "sensationalism_level": "High/Medium/Low",
|
186 |
+
# "bias_indicators": ["bias1", "bias2"],
|
187 |
+
# "tone": {{"formality": "formal/informal", "style": "Professional/Emotional/Neutral"}},
|
188 |
+
# "emotional_triggers": ["trigger1", "trigger2"]
|
189 |
+
# }},
|
190 |
+
# "entity_recognition": {{
|
191 |
+
# "source_credibility": "High/Medium/Low",
|
192 |
+
# "people": ["person1", "person2"],
|
193 |
+
# "organizations": ["org1", "org2"],
|
194 |
+
# "locations": ["location1", "location2"],
|
195 |
+
# "dates": ["date1", "date2"],
|
196 |
+
# "statistics": ["stat1", "stat2"]
|
197 |
+
# }},
|
198 |
+
# "context": {{
|
199 |
+
# "main_narrative": "",
|
200 |
+
# "supporting_elements": ["element1", "element2"],
|
201 |
+
# "key_claims": ["claim1", "claim2"],
|
202 |
+
# "narrative_structure": ""
|
203 |
+
# }},
|
204 |
+
# "fact_checking": {{
|
205 |
+
# "verifiable_claims": ["claim1", "claim2"],
|
206 |
+
# "evidence_present": "Yes/No",
|
207 |
+
# "fact_check_score": "0-100"
|
208 |
+
# }}
|
209 |
+
# }}
|
210 |
+
|
211 |
+
# Analyze this text and return only the JSON response: {text}"""
|
212 |
+
|
213 |
+
# response = model.generate_content(prompt)
|
214 |
+
# # return json.loads(response.text)
|
215 |
+
# # Add error handling and response cleaning
|
216 |
+
# try:
|
217 |
+
# # Clean the response text to ensure it's valid JSON
|
218 |
+
# cleaned_text = response.text.strip()
|
219 |
+
# if cleaned_text.startswith('```json'):
|
220 |
+
# cleaned_text = cleaned_text[7:-3] # Remove ```json and ``` markers
|
221 |
+
# return json.loads(cleaned_text)
|
222 |
+
# except json.JSONDecodeError:
|
223 |
+
# # Return a default structured response if JSON parsing fails
|
224 |
+
# return {
|
225 |
+
# "gemini_analysis": {
|
226 |
+
# "predicted_classification": "UNCERTAIN",
|
227 |
+
# "confidence_score": "50",
|
228 |
+
# "reasoning": ["Analysis failed to generate valid JSON"]
|
229 |
+
# }
|
230 |
+
# }
|
231 |
+
|
232 |
+
|
233 |
+
# def clean_gemini_output(text):
|
234 |
+
# """Remove markdown formatting from Gemini output"""
|
235 |
+
# text = text.replace('##', '')
|
236 |
+
# text = text.replace('**', '')
|
237 |
+
# return text
|
238 |
+
|
239 |
+
# def get_gemini_analysis(text):
|
240 |
+
# """Get detailed content analysis from Gemini."""
|
241 |
+
# gemini_model = setup_gemini()
|
242 |
+
# gemini_analysis = analyze_content_gemini(gemini_model, text)
|
243 |
+
# # cleaned_analysis = clean_gemini_output(gemini_analysis)
|
244 |
+
# # return cleaned_analysis
|
245 |
+
# return gemini_analysis
|
246 |
+
# #########################
|
247 |
+
|
248 |
+
# def main():
|
249 |
+
# print("Welcome to the News Classifier!")
|
250 |
+
# print("Enter your news text below. Type 'Exit' to quit.")
|
251 |
+
|
252 |
+
# while True:
|
253 |
+
# news_text = input("\nEnter news text: ")
|
254 |
+
|
255 |
+
# if news_text.lower() == 'exit':
|
256 |
+
# print("Thank you for using the News Classifier!")
|
257 |
+
# return
|
258 |
+
|
259 |
+
# # First get ML and Knowledge Graph prediction
|
260 |
+
# prediction = predict_news(news_text)
|
261 |
+
# print(f"\nML and Knowledge Graph Analysis: {prediction}")
|
262 |
+
|
263 |
+
# # Then get Gemini analysis
|
264 |
+
# print("\n=== Detailed Gemini Analysis ===")
|
265 |
+
# gemini_result = get_gemini_analysis(news_text)
|
266 |
+
# print(gemini_result)
|
267 |
+
|
268 |
+
|
269 |
+
# if __name__ == "__main__":
|
270 |
+
# main()
|
271 |
+
|
272 |
+
import streamlit as st
|
273 |
import torch
|
274 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, DebertaV2Tokenizer
|
275 |
+
import networkx as nx
|
276 |
import spacy
|
277 |
+
import pickle
|
278 |
import google.generativeai as genai
|
279 |
import json
|
280 |
import os
|
281 |
import dotenv
|
282 |
|
283 |
+
# Page config
|
284 |
+
st.set_page_config(
|
285 |
+
page_title="Nexus NLP News Classifier",
|
286 |
+
page_icon="📰",
|
287 |
+
layout="wide"
|
288 |
+
)
|
289 |
+
|
290 |
+
# Load environment variables
|
291 |
dotenv.load_dotenv()
|
292 |
|
293 |
+
# Load models and resources
|
294 |
+
@st.cache_resource
|
295 |
+
def load_nlp():
|
296 |
+
return spacy.load("en_core_web_sm")
|
297 |
|
298 |
+
@st.cache_resource
|
299 |
+
def load_model():
|
300 |
+
model_path = "./results/checkpoint-753"
|
301 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
|
302 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
303 |
+
model.eval()
|
304 |
+
return tokenizer, model
|
305 |
+
|
306 |
+
@st.cache_resource
|
307 |
+
def load_knowledge_graph():
|
308 |
+
graph_path = "./knowledge_graph_final.pkl"
|
309 |
+
with open(graph_path, 'rb') as f:
|
310 |
+
graph_data = pickle.load(f)
|
311 |
+
knowledge_graph = nx.DiGraph()
|
312 |
+
knowledge_graph.add_nodes_from(graph_data['nodes'].items())
|
313 |
+
for u, edges in graph_data['edges'].items():
|
314 |
+
for v, data in edges.items():
|
315 |
+
knowledge_graph.add_edge(u, v, **data)
|
316 |
+
return knowledge_graph
|
317 |
|
318 |
def setup_gemini():
|
319 |
genai.configure(api_key=os.getenv("GEMINI_API"))
|
320 |
model = genai.GenerativeModel('gemini-pro')
|
321 |
return model
|
322 |
|
323 |
+
# Initialize resources
|
324 |
+
nlp = load_nlp()
|
325 |
+
tokenizer, model = load_model()
|
326 |
+
knowledge_graph = load_knowledge_graph()
|
327 |
+
|
328 |
def predict_with_model(text):
|
|
|
329 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
330 |
with torch.no_grad():
|
331 |
outputs = model(**inputs)
|
332 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
333 |
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
334 |
+
confidence = probabilities[0][predicted_label].item() * 100
|
335 |
+
return "FAKE" if predicted_label == 1 else "REAL", confidence
|
336 |
|
337 |
def extract_entities(text):
|
|
|
338 |
doc = nlp(text)
|
339 |
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
340 |
return entities
|
341 |
|
342 |
+
def update_knowledge_graph(text, is_real):
|
343 |
+
entities = extract_entities(text)
|
344 |
+
for entity, entity_type in entities:
|
345 |
+
if not knowledge_graph.has_node(entity):
|
346 |
+
knowledge_graph.add_node(
|
347 |
+
entity,
|
348 |
+
type=entity_type,
|
349 |
+
real_count=1 if is_real else 0,
|
350 |
+
fake_count=0 if is_real else 1
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
if is_real:
|
354 |
+
knowledge_graph.nodes[entity]['real_count'] += 1
|
355 |
+
else:
|
356 |
+
knowledge_graph.nodes[entity]['fake_count'] += 1
|
357 |
+
|
358 |
+
for i, (entity1, _) in enumerate(entities):
|
359 |
+
for entity2, _ in entities[i+1:]:
|
360 |
+
if not knowledge_graph.has_edge(entity1, entity2):
|
361 |
+
knowledge_graph.add_edge(
|
362 |
+
entity1,
|
363 |
+
entity2,
|
364 |
+
weight=1,
|
365 |
+
is_real=is_real
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
knowledge_graph[entity1][entity2]['weight'] += 1
|
369 |
+
|
370 |
+
def predict_with_knowledge_graph(text):
|
371 |
+
entities = extract_entities(text)
|
372 |
+
real_score = 0
|
373 |
+
fake_score = 0
|
374 |
+
|
375 |
+
for entity, _ in entities:
|
376 |
+
if knowledge_graph.has_node(entity):
|
377 |
+
real_count = knowledge_graph.nodes[entity].get('real_count', 0)
|
378 |
+
fake_count = knowledge_graph.nodes[entity].get('fake_count', 0)
|
379 |
+
total = real_count + fake_count
|
380 |
+
if total > 0:
|
381 |
+
real_score += real_count / total
|
382 |
+
fake_score += fake_count / total
|
383 |
+
|
384 |
+
total_score = real_score + fake_score
|
385 |
+
if total_score == 0:
|
386 |
+
return "UNCERTAIN", 50.0
|
387 |
+
|
388 |
+
if real_score > fake_score:
|
389 |
+
confidence = (real_score / total_score) * 100
|
390 |
+
return "REAL", confidence
|
391 |
+
else:
|
392 |
+
confidence = (fake_score / total_score) * 100
|
393 |
+
return "FAKE", confidence
|
394 |
|
395 |
def analyze_content_gemini(model, text):
|
396 |
prompt = f"""Analyze this news text and return a JSON object with the following structure:
|
|
|
452 |
}
|
453 |
}
|
454 |
|
455 |
+
def main():
|
456 |
+
st.title("📰 Nexus NLP News Classifier")
|
457 |
+
st.write("Enter news text below to analyze its authenticity")
|
|
|
|
|
458 |
|
459 |
+
# Query parameters for API functionality
|
460 |
+
query_params = st.query_params
|
461 |
+
if "text" in query_params:
|
462 |
+
text_input = query_params["text"][0]
|
463 |
+
ml_prediction, ml_confidence = predict_with_model(text_input)
|
464 |
+
st.json({"prediction": ml_prediction, "confidence": ml_confidence})
|
465 |
+
return
|
466 |
|
467 |
+
# Regular UI
|
468 |
+
news_text = st.text_area("News Text", height=200)
|
469 |
+
|
470 |
+
if st.button("Analyze"):
|
471 |
+
if news_text:
|
472 |
+
with st.spinner("Analyzing..."):
|
473 |
+
# Get all predictions
|
474 |
+
ml_prediction, ml_confidence = predict_with_model(news_text)
|
475 |
+
kg_prediction, kg_confidence = predict_with_knowledge_graph(news_text)
|
476 |
+
update_knowledge_graph(news_text, ml_prediction == "REAL")
|
477 |
+
|
478 |
+
gemini_model = setup_gemini()
|
479 |
+
gemini_result = analyze_content_gemini(gemini_model, news_text)
|
480 |
+
|
481 |
+
# Display results
|
482 |
+
col1, col2, col3 = st.columns(3)
|
483 |
+
|
484 |
+
with col1:
|
485 |
+
st.subheader("ML Model Analysis")
|
486 |
+
st.metric("Prediction", ml_prediction)
|
487 |
+
st.metric("Confidence", f"{ml_confidence:.2f}%")
|
488 |
+
|
489 |
+
with col2:
|
490 |
+
st.subheader("Knowledge Graph Analysis")
|
491 |
+
st.metric("Prediction", kg_prediction)
|
492 |
+
st.metric("Confidence", f"{kg_confidence:.2f}%")
|
493 |
+
|
494 |
+
with col3:
|
495 |
+
st.subheader("Gemini Analysis")
|
496 |
+
gemini_pred = gemini_result["gemini_analysis"]["predicted_classification"]
|
497 |
+
gemini_conf = gemini_result["gemini_analysis"]["confidence_score"]
|
498 |
+
st.metric("Prediction", gemini_pred)
|
499 |
+
st.metric("Confidence", f"{gemini_conf}%")
|
500 |
+
|
501 |
+
with st.expander("View Detailed Analysis"):
|
502 |
+
st.json(gemini_result)
|
503 |
+
|
504 |
+
with st.expander("Named Entities"):
|
505 |
+
entities = extract_entities(news_text)
|
506 |
+
st.write(entities)
|
507 |
+
|
508 |
+
else:
|
509 |
+
st.warning("Please enter some text to analyze")
|
510 |
|
511 |
if __name__ == "__main__":
|
512 |
main()
|
knowledge_graph_final.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f941e2c0b588a89f20e59aefd71c455696b291c88277672d997ea144164f70e8
|
3 |
+
size 10584988
|
prev_final.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import spacy
|
4 |
+
import google.generativeai as genai
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import dotenv
|
8 |
+
|
9 |
+
dotenv.load_dotenv()
|
10 |
+
|
11 |
+
# Load spaCy for NER
|
12 |
+
nlp = spacy.load("en_core_web_sm")
|
13 |
+
|
14 |
+
# Load the trained ML model
|
15 |
+
model_path = "./results/checkpoint-753" # Replace with the actual path to your model
|
16 |
+
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small')
|
17 |
+
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
18 |
+
from transformers import DebertaV2Tokenizer
|
19 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
|
20 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
def setup_gemini():
|
24 |
+
genai.configure(api_key=os.getenv("GEMINI_API"))
|
25 |
+
model = genai.GenerativeModel('gemini-pro')
|
26 |
+
return model
|
27 |
+
|
28 |
+
def predict_with_model(text):
|
29 |
+
"""Predict whether the news is real or fake using the ML model."""
|
30 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
34 |
+
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
35 |
+
return "FAKE" if predicted_label == 1 else "REAL"
|
36 |
+
|
37 |
+
def extract_entities(text):
|
38 |
+
"""Extract named entities from text using spaCy."""
|
39 |
+
doc = nlp(text)
|
40 |
+
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
41 |
+
return entities
|
42 |
+
|
43 |
+
def predict_news(text):
|
44 |
+
"""Predict whether the news is real or fake using the ML model."""
|
45 |
+
# Predict with the ML model
|
46 |
+
prediction = predict_with_model(text)
|
47 |
+
return prediction
|
48 |
+
|
49 |
+
def analyze_content_gemini(model, text):
|
50 |
+
prompt = f"""Analyze this news text and return a JSON object with the following structure:
|
51 |
+
{{
|
52 |
+
"gemini_analysis": {{
|
53 |
+
"predicted_classification": "Real or Fake",
|
54 |
+
"confidence_score": "0-100",
|
55 |
+
"reasoning": ["point1", "point2"]
|
56 |
+
}},
|
57 |
+
"text_classification": {{
|
58 |
+
"category": "",
|
59 |
+
"writing_style": "Formal/Informal/Clickbait",
|
60 |
+
"target_audience": "",
|
61 |
+
"content_type": "news/opinion/editorial"
|
62 |
+
}},
|
63 |
+
"sentiment_analysis": {{
|
64 |
+
"primary_emotion": "",
|
65 |
+
"emotional_intensity": "1-10",
|
66 |
+
"sensationalism_level": "High/Medium/Low",
|
67 |
+
"bias_indicators": ["bias1", "bias2"],
|
68 |
+
"tone": {{"formality": "formal/informal", "style": "Professional/Emotional/Neutral"}},
|
69 |
+
"emotional_triggers": ["trigger1", "trigger2"]
|
70 |
+
}},
|
71 |
+
"entity_recognition": {{
|
72 |
+
"source_credibility": "High/Medium/Low",
|
73 |
+
"people": ["person1", "person2"],
|
74 |
+
"organizations": ["org1", "org2"],
|
75 |
+
"locations": ["location1", "location2"],
|
76 |
+
"dates": ["date1", "date2"],
|
77 |
+
"statistics": ["stat1", "stat2"]
|
78 |
+
}},
|
79 |
+
"context": {{
|
80 |
+
"main_narrative": "",
|
81 |
+
"supporting_elements": ["element1", "element2"],
|
82 |
+
"key_claims": ["claim1", "claim2"],
|
83 |
+
"narrative_structure": ""
|
84 |
+
}},
|
85 |
+
"fact_checking": {{
|
86 |
+
"verifiable_claims": ["claim1", "claim2"],
|
87 |
+
"evidence_present": "Yes/No",
|
88 |
+
"fact_check_score": "0-100"
|
89 |
+
}}
|
90 |
+
}}
|
91 |
+
|
92 |
+
Analyze this text and return only the JSON response: {text}"""
|
93 |
+
|
94 |
+
response = model.generate_content(prompt)
|
95 |
+
try:
|
96 |
+
cleaned_text = response.text.strip()
|
97 |
+
if cleaned_text.startswith('```json'):
|
98 |
+
cleaned_text = cleaned_text[7:-3]
|
99 |
+
return json.loads(cleaned_text)
|
100 |
+
except json.JSONDecodeError:
|
101 |
+
return {
|
102 |
+
"gemini_analysis": {
|
103 |
+
"predicted_classification": "UNCERTAIN",
|
104 |
+
"confidence_score": "50",
|
105 |
+
"reasoning": ["Analysis failed to generate valid JSON"]
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
def clean_gemini_output(text):
|
110 |
+
"""Remove markdown formatting from Gemini output"""
|
111 |
+
text = text.replace('##', '')
|
112 |
+
text = text.replace('**', '')
|
113 |
+
return text
|
114 |
+
|
115 |
+
def get_gemini_analysis(text):
|
116 |
+
"""Get detailed content analysis from Gemini."""
|
117 |
+
gemini_model = setup_gemini()
|
118 |
+
gemini_analysis = analyze_content_gemini(gemini_model, text)
|
119 |
+
return gemini_analysis
|
120 |
+
|
121 |
+
def main():
|
122 |
+
print("Welcome to the News Classifier!")
|
123 |
+
print("Enter your news text below. Type 'Exit' to quit.")
|
124 |
+
|
125 |
+
while True:
|
126 |
+
news_text = input("\nEnter news text: ")
|
127 |
+
|
128 |
+
if news_text.lower() == 'exit':
|
129 |
+
print("Thank you for using the News Classifier!")
|
130 |
+
return
|
131 |
+
|
132 |
+
# Get ML prediction
|
133 |
+
prediction = predict_news(news_text)
|
134 |
+
print(f"\nML Analysis: {prediction}")
|
135 |
+
|
136 |
+
# Get Gemini analysis
|
137 |
+
print("\n=== Detailed Gemini Analysis ===")
|
138 |
+
gemini_result = get_gemini_analysis(news_text)
|
139 |
+
print(gemini_result)
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
main()
|
test.py
CHANGED
@@ -1,14 +1,51 @@
|
|
1 |
-
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
result = response.json()
|
12 |
-
print(f"Prediction: {result['prediction']} (Confidence: {result['confidence']*100:.2f}%)")
|
13 |
-
else:
|
14 |
-
print("Error: Could not get prediction")
|
|
|
1 |
+
# import requests
|
2 |
+
# import json
|
3 |
+
|
4 |
+
# # Replace with your actual Hugging Face Spaces URL
|
5 |
+
# SPACE_API_URL = "https://heheboi0769-nexus-nlp-model.hf.space//?text=Breaking: Stock market crashes!"
|
6 |
+
|
7 |
+
# # Add the text as a query parameter since the app uses st.experimental_get_query_params()
|
8 |
+
# text = "Breaking: Stock market crashes!"
|
9 |
+
# url_with_params = f"{SPACE_API_URL}?text={text}"
|
10 |
|
11 |
+
# # Send request to Streamlit API
|
12 |
+
# response = requests.get(url_with_params)
|
13 |
+
|
14 |
+
# # Parse JSON response
|
15 |
+
# if response.status_code == 200:
|
16 |
+
# result = response.json()
|
17 |
+
# print(f"Prediction: {result['prediction']} (Confidence: {result['confidence']*100:.2f}%)")
|
18 |
+
# else:
|
19 |
+
# print("Error: Could not get prediction")
|
20 |
+
|
21 |
+
import requests
|
22 |
+
import urllib.parse
|
23 |
|
24 |
+
def test_model():
|
25 |
+
# Base URL for your Streamlit app
|
26 |
+
base_url = "https://heheboi0769-nexus-nlp-model.hf.space/api"
|
27 |
+
|
28 |
+
# Test text
|
29 |
+
text = "Breaking: Stock market crashes!"
|
30 |
+
|
31 |
+
# Make request to the Streamlit app's API endpoint
|
32 |
+
response = requests.post(
|
33 |
+
f"{base_url}/predict",
|
34 |
+
headers={
|
35 |
+
"Content-Type": "application/json",
|
36 |
+
"Authorization": "Bearer your_api_key_here"
|
37 |
+
},
|
38 |
+
json={"text": text}
|
39 |
+
)
|
40 |
+
|
41 |
+
# Print response for debugging
|
42 |
+
print(f"Status Code: {response.status_code}")
|
43 |
+
print(f"Response: {response.text}")
|
44 |
+
|
45 |
+
if response.status_code == 200:
|
46 |
+
result = response.json()
|
47 |
+
print(f"Prediction: {result['prediction']}")
|
48 |
+
print(f"Confidence: {result['confidence']*100:.2f}%")
|
49 |
|
50 |
+
if __name__ == "__main__":
|
51 |
+
test_model()
|
|
|
|
|
|
|
|