Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
import logging | |
import gc | |
# ๋ก๊น ์ค์ | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# ๋ชจ๋ธ ์ค์ | |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" | |
LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
# ํ๋ผ๋ฏธํฐ ์ค์ | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 512 | |
DEFAULT_W_SLIDER_VALUE = 512 # Zero GPU๋ฅผ ์ํด ์ ์ฌ๊ฐํ ๊ธฐ๋ณธ๊ฐ | |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 81 | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "static, blurred, low quality, watermark, text" | |
# ๋ชจ๋ธ ๊ธ๋ก๋ฒ ๋ก๋ฉ | |
logger.info("Loading model components...") | |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanImageToVideoPipeline.from_pretrained( | |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
# LoRA ๋ก๋ฉ | |
try: | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) | |
pipe.fuse_lora() | |
logger.info("LoRA loaded successfully") | |
except Exception as e: | |
logger.warning(f"LoRA loading failed: {e}") | |
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ํ์ฑํ | |
pipe.enable_vae_slicing() | |
pipe.enable_vae_tiling() | |
pipe.enable_model_cpu_offload() | |
logger.info("Model loaded and ready") | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
min_slider_h, max_slider_h, | |
min_slider_w, max_slider_w, | |
default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
# Zero GPU๋ฅผ ์ํ ๋ณด์์ ์ธ ๊ณ์ฐ | |
if hasattr(spaces, 'GPU'): | |
# ๋ ์์ max_area ์ฌ์ฉ | |
calculation_max_area = min(calculation_max_area, 320.0 * 320.0) | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ์ ํ | |
if hasattr(spaces, 'GPU'): | |
max_slider_h = min(max_slider_h, 640) | |
max_slider_w = min(max_slider_w, 640) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def get_duration(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
progress): | |
# Zero GPU๋ฅผ ์ํ ๋ณด์์ ์ธ ์๊ฐ ํ ๋น | |
base_time = 60 | |
if hasattr(spaces, 'GPU'): | |
# Zero GPU ํ๊ฒฝ์์ ๋ ๋ง์ ์๊ฐ ํ ๋น | |
if steps > 4 and duration_seconds > 2: | |
return 90 | |
elif steps > 4 or duration_seconds > 2: | |
return 80 | |
else: | |
return 70 | |
else: | |
# ์ผ๋ฐ GPU ํ๊ฒฝ | |
if steps > 4 and duration_seconds > 2: | |
return 90 | |
elif steps > 4 or duration_seconds > 2: | |
return 75 | |
else: | |
return 60 | |
def generate_video(input_image, prompt, height, width, | |
negative_prompt=default_negative_prompt, duration_seconds = 2, | |
guidance_scale = 1, steps = 4, | |
seed = 42, randomize_seed = False, | |
progress=gr.Progress(track_tqdm=True)): | |
if input_image is None: | |
raise gr.Error("Please upload an input image.") | |
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ๊ฒ์ฆ | |
if hasattr(spaces, 'GPU'): | |
# ํฝ์ ์ ํ | |
max_pixels = 409600 # 640x640 | |
if height * width > max_pixels: | |
raise gr.Error(f"Resolution too high for Zero GPU. Maximum {max_pixels:,} pixels (e.g., 640ร640)") | |
# Duration ์ ํ | |
if duration_seconds > 2.5: | |
duration_seconds = 2.5 | |
gr.Warning("Duration limited to 2.5s in Zero GPU environment") | |
# Steps ์ ํ | |
if steps > 8: | |
steps = 8 | |
gr.Warning("Steps limited to 8 in Zero GPU environment") | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
# Zero GPU์์ ํ๋ ์ ์ ์ถ๊ฐ ์ ํ | |
if hasattr(spaces, 'GPU'): | |
max_frames_zerogpu = int(2.5 * FIXED_FPS) # 2.5์ด | |
num_frames = min(num_frames, max_frames_zerogpu) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
logger.info(f"Generating video: {target_h}x{target_w}, {num_frames} frames, seed={current_seed}") | |
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ | |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS) | |
try: | |
with torch.inference_mode(): | |
output_frames_list = pipe( | |
image=resized_image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
except torch.cuda.OutOfMemoryError: | |
gc.collect() | |
torch.cuda.empty_cache() | |
raise gr.Error("GPU out of memory. Try smaller resolution or shorter duration.") | |
except Exception as e: | |
logger.error(f"Generation failed: {e}") | |
raise gr.Error(f"Video generation failed: {str(e)[:100]}") | |
# ๋น๋์ค ์ ์ฅ | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
del output_frames_list | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return video_path, current_seed | |
# CSS ์คํ์ผ (๊ธฐ์กด UI ์ ์ง) | |
css = """ | |
.container { | |
max-width: 1200px; | |
margin: auto; | |
padding: 20px; | |
} | |
.header { | |
text-align: center; | |
margin-bottom: 30px; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
padding: 40px; | |
border-radius: 20px; | |
color: white; | |
box-shadow: 0 10px 30px rgba(0,0,0,0.2); | |
position: relative; | |
overflow: hidden; | |
} | |
.header::before { | |
content: ''; | |
position: absolute; | |
top: -50%; | |
left: -50%; | |
width: 200%; | |
height: 200%; | |
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%); | |
animation: pulse 4s ease-in-out infinite; | |
} | |
@keyframes pulse { | |
0%, 100% { transform: scale(1); opacity: 0.5; } | |
50% { transform: scale(1.1); opacity: 0.8; } | |
} | |
.header h1 { | |
font-size: 3em; | |
margin-bottom: 10px; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3); | |
position: relative; | |
z-index: 1; | |
} | |
.header p { | |
font-size: 1.2em; | |
opacity: 0.95; | |
position: relative; | |
z-index: 1; | |
} | |
.gpu-status { | |
position: absolute; | |
top: 10px; | |
right: 10px; | |
background: rgba(0,0,0,0.3); | |
padding: 5px 15px; | |
border-radius: 20px; | |
font-size: 0.8em; | |
} | |
.main-content { | |
background: rgba(255, 255, 255, 0.95); | |
border-radius: 20px; | |
padding: 30px; | |
box-shadow: 0 5px 20px rgba(0,0,0,0.1); | |
backdrop-filter: blur(10px); | |
} | |
.input-section { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
padding: 25px; | |
border-radius: 15px; | |
margin-bottom: 20px; | |
} | |
.generate-btn { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
color: white; | |
font-size: 1.3em; | |
padding: 15px 40px; | |
border-radius: 30px; | |
border: none; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4); | |
width: 100%; | |
margin-top: 20px; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6); | |
} | |
.generate-btn:active { | |
transform: translateY(0); | |
} | |
.video-output { | |
background: #f8f9fa; | |
padding: 20px; | |
border-radius: 15px; | |
text-align: center; | |
min-height: 400px; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
.accordion { | |
background: rgba(255, 255, 255, 0.7); | |
border-radius: 10px; | |
margin-top: 15px; | |
padding: 15px; | |
} | |
.slider-container { | |
background: rgba(255, 255, 255, 0.5); | |
padding: 15px; | |
border-radius: 10px; | |
margin: 10px 0; | |
} | |
body { | |
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab); | |
background-size: 400% 400%; | |
animation: gradient 15s ease infinite; | |
} | |
@keyframes gradient { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
.warning-box { | |
background: rgba(255, 193, 7, 0.1); | |
border: 1px solid rgba(255, 193, 7, 0.3); | |
border-radius: 10px; | |
padding: 15px; | |
margin: 10px 0; | |
color: #856404; | |
font-size: 0.9em; | |
} | |
.info-box { | |
background: rgba(52, 152, 219, 0.1); | |
border: 1px solid rgba(52, 152, 219, 0.3); | |
border-radius: 10px; | |
padding: 15px; | |
margin: 10px 0; | |
color: #2c5282; | |
font-size: 0.9em; | |
} | |
.footer { | |
text-align: center; | |
margin-top: 30px; | |
color: #666; | |
font-size: 0.9em; | |
} | |
""" | |
# Gradio UI (๊ธฐ์กด ๊ตฌ์กฐ ์ ์ง) | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_classes="container"): | |
# Header with GPU status | |
gr.HTML(""" | |
<div class="header"> | |
<h1>๐ฌ AI Video Magic Studio</h1> | |
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p> | |
<div class="gpu-status">๐ฅ๏ธ Zero GPU Optimized</div> | |
</div> | |
""") | |
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ฒฝ๊ณ | |
if hasattr(spaces, 'GPU'): | |
gr.HTML(""" | |
<div class="warning-box"> | |
<strong>๐ก Zero GPU Performance Tips:</strong> | |
<ul style="margin: 5px 0; padding-left: 20px;"> | |
<li>Maximum duration: 2.5 seconds</li> | |
<li>Maximum resolution: 640ร640 pixels</li> | |
<li>Recommended: 512ร512 at 2 seconds</li> | |
<li>Use 4-6 steps for optimal speed/quality balance</li> | |
<li>Processing time: ~60-90 seconds</li> | |
</ul> | |
</div> | |
""") | |
# ์ ๋ณด ๋ฐ์ค | |
gr.HTML(""" | |
<div class="info-box"> | |
<strong>๐ฏ Quick Start Guide:</strong> | |
<ol style="margin: 5px 0; padding-left: 20px;"> | |
<li>Upload your image - AI will calculate optimal dimensions</li> | |
<li>Enter a creative prompt or use the default</li> | |
<li>Adjust duration (2s recommended for best results)</li> | |
<li>Click Generate and wait for completion</li> | |
</ol> | |
</div> | |
""") | |
with gr.Row(elem_classes="main-content"): | |
with gr.Column(scale=1): | |
gr.Markdown("### ๐ธ Input Settings") | |
with gr.Column(elem_classes="input-section"): | |
input_image = gr.Image( | |
type="pil", | |
label="๐ผ๏ธ Upload Your Image", | |
elem_classes="image-upload" | |
) | |
prompt_input = gr.Textbox( | |
label="โจ Animation Prompt", | |
value=default_prompt_i2v, | |
placeholder="Describe how you want your image to move...", | |
lines=2 | |
) | |
duration_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1) if not hasattr(spaces, 'GPU') else 2.5, | |
step=0.1, | |
value=2, | |
label=f"โฑ๏ธ Video Duration (seconds) - Clamped to {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps", | |
elem_classes="slider-container" | |
) | |
with gr.Accordion("๐๏ธ Advanced Settings", open=False, elem_classes="accordion"): | |
negative_prompt = gr.Textbox( | |
label="๐ซ Negative Prompt", | |
value=default_negative_prompt, | |
lines=3 | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
label="๐ฒ Seed" | |
) | |
randomize_seed = gr.Checkbox( | |
label="๐ Randomize", | |
value=True | |
) | |
with gr.Row(): | |
height_slider = gr.Slider( | |
minimum=SLIDER_MIN_H, | |
maximum=SLIDER_MAX_H if not hasattr(spaces, 'GPU') else 640, | |
step=MOD_VALUE, | |
value=DEFAULT_H_SLIDER_VALUE, | |
label=f"๐ Height (multiple of {MOD_VALUE})" | |
) | |
width_slider = gr.Slider( | |
minimum=SLIDER_MIN_W, | |
maximum=SLIDER_MAX_W if not hasattr(spaces, 'GPU') else 640, | |
step=MOD_VALUE, | |
value=DEFAULT_W_SLIDER_VALUE, | |
label=f"๐ Width (multiple of {MOD_VALUE})" | |
) | |
steps_slider = gr.Slider( | |
minimum=1, | |
maximum=30 if not hasattr(spaces, 'GPU') else 8, | |
step=1, | |
value=4, | |
label="๐ง Quality Steps (4-6 recommended)" | |
) | |
guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=1.0, | |
label="๐ฏ Guidance Scale", | |
visible=False | |
) | |
generate_btn = gr.Button( | |
"๐ฌ Generate Video", | |
variant="primary", | |
elem_classes="generate-btn" | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("### ๐ฅ Generated Video") | |
video_output = gr.Video( | |
label="", | |
autoplay=True, | |
elem_classes="video-output" | |
) | |
gr.HTML(""" | |
<div class="footer"> | |
<p>๐ก Tip: For best results, use clear images with good lighting and distinct subjects</p> | |
</div> | |
""") | |
# Examples | |
gr.Examples( | |
examples=[ | |
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 512, 512], | |
["forg.jpg", "the frog jumps around", 448, 576], | |
], | |
inputs=[input_image, prompt_input, height_slider, width_slider], | |
outputs=[video_output, seed], | |
fn=generate_video, | |
cache_examples=False # ์บ์ ๋นํ์ฑํ๋ก ๋ฉ๋ชจ๋ฆฌ ์ ์ฝ | |
) | |
# ๊ฐ์ ์ฌํญ ์์ฝ | |
gr.HTML(""" | |
<div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;"> | |
<p style="margin: 0; color: #666;"> | |
<strong style="color: #667eea;">Powered by:</strong> | |
Wan 2.1 I2V (14B) + CausVid LoRA โข ๐ 4-8 steps fast inference โข ๐ฌ Up to 81 frames | |
</p> | |
</div> | |
""") | |
# Event handlers | |
input_image.upload( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image, height_slider, width_slider], | |
outputs=[height_slider, width_slider] | |
) | |
input_image.clear( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image, height_slider, width_slider], | |
outputs=[height_slider, width_slider] | |
) | |
generate_btn.click( | |
fn=generate_video, | |
inputs=[ | |
input_image, prompt_input, height_slider, width_slider, | |
negative_prompt, duration_input, guidance_scale, | |
steps_slider, seed, randomize_seed | |
], | |
outputs=[video_output, seed] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |