Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,951 Bytes
5f364b5 f4cf641 c103ac7 f4cf641 5f364b5 c103ac7 5f364b5 f4cf641 12d6cf5 8268b44 ec4cebf 5f364b5 ec4cebf 8268b44 bfa6fb3 8116465 bfa6fb3 ec4cebf 8116465 bfa6fb3 8268b44 bfa6fb3 8575388 bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 f4cf641 bfa6fb3 f4cf641 bfa6fb3 a816f3f bfa6fb3 1b75f51 8116465 bfa6fb3 1e531a7 8268b44 bfa6fb3 8268b44 bfa6fb3 ec4cebf bfa6fb3 05707ed bfa6fb3 a816f3f bfa6fb3 5b5b696 bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 05707ed ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 5b5b696 bfa6fb3 5b5b696 bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 c68ae83 bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 a816f3f bfa6fb3 ec4cebf c68ae83 bfa6fb3 c68ae83 bfa6fb3 c68ae83 bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf 8575388 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 ec4cebf bfa6fb3 c68ae83 bfa6fb3 c68ae83 5f364b5 bfa6fb3 5f364b5 bfa6fb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ๋ชจ๋ธ ์ค์
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# ํ๋ผ๋ฏธํฐ ์ค์
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 512 # Zero GPU๋ฅผ ์ํด ์ ์ฌ๊ฐํ ๊ธฐ๋ณธ๊ฐ
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "static, blurred, low quality, watermark, text"
# ๋ชจ๋ธ ๊ธ๋ก๋ฒ ๋ก๋ฉ
logger.info("Loading model components...")
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
# LoRA ๋ก๋ฉ
try:
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()
logger.info("LoRA loaded successfully")
except Exception as e:
logger.warning(f"LoRA loading failed: {e}")
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ํ์ฑํ
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()
logger.info("Model loaded and ready")
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
# Zero GPU๋ฅผ ์ํ ๋ณด์์ ์ธ ๊ณ์ฐ
if hasattr(spaces, 'GPU'):
# ๋ ์์ max_area ์ฌ์ฉ
calculation_max_area = min(calculation_max_area, 320.0 * 320.0)
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ์ ํ
if hasattr(spaces, 'GPU'):
max_slider_h = min(max_slider_h, 640)
max_slider_w = min(max_slider_w, 640)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
# Zero GPU๋ฅผ ์ํ ๋ณด์์ ์ธ ์๊ฐ ํ ๋น
base_time = 60
if hasattr(spaces, 'GPU'):
# Zero GPU ํ๊ฒฝ์์ ๋ ๋ง์ ์๊ฐ ํ ๋น
if steps > 4 and duration_seconds > 2:
return 90
elif steps > 4 or duration_seconds > 2:
return 80
else:
return 70
else:
# ์ผ๋ฐ GPU ํ๊ฒฝ
if steps > 4 and duration_seconds > 2:
return 90
elif steps > 4 or duration_seconds > 2:
return 75
else:
return 60
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds = 2,
guidance_scale = 1, steps = 4,
seed = 42, randomize_seed = False,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ๊ฒ์ฆ
if hasattr(spaces, 'GPU'):
# ํฝ์
์ ํ
max_pixels = 409600 # 640x640
if height * width > max_pixels:
raise gr.Error(f"Resolution too high for Zero GPU. Maximum {max_pixels:,} pixels (e.g., 640ร640)")
# Duration ์ ํ
if duration_seconds > 2.5:
duration_seconds = 2.5
gr.Warning("Duration limited to 2.5s in Zero GPU environment")
# Steps ์ ํ
if steps > 8:
steps = 8
gr.Warning("Steps limited to 8 in Zero GPU environment")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
# Zero GPU์์ ํ๋ ์ ์ ์ถ๊ฐ ์ ํ
if hasattr(spaces, 'GPU'):
max_frames_zerogpu = int(2.5 * FIXED_FPS) # 2.5์ด
num_frames = min(num_frames, max_frames_zerogpu)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
logger.info(f"Generating video: {target_h}x{target_w}, {num_frames} frames, seed={current_seed}")
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
try:
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
except torch.cuda.OutOfMemoryError:
gc.collect()
torch.cuda.empty_cache()
raise gr.Error("GPU out of memory. Try smaller resolution or shorter duration.")
except Exception as e:
logger.error(f"Generation failed: {e}")
raise gr.Error(f"Video generation failed: {str(e)[:100]}")
# ๋น๋์ค ์ ์ฅ
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
del output_frames_list
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return video_path, current_seed
# CSS ์คํ์ผ (๊ธฐ์กด UI ์ ์ง)
css = """
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 30px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 40px;
border-radius: 20px;
color: white;
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
position: relative;
overflow: hidden;
}
.header::before {
content: '';
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
animation: pulse 4s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { transform: scale(1); opacity: 0.5; }
50% { transform: scale(1.1); opacity: 0.8; }
}
.header h1 {
font-size: 3em;
margin-bottom: 10px;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
position: relative;
z-index: 1;
}
.header p {
font-size: 1.2em;
opacity: 0.95;
position: relative;
z-index: 1;
}
.gpu-status {
position: absolute;
top: 10px;
right: 10px;
background: rgba(0,0,0,0.3);
padding: 5px 15px;
border-radius: 20px;
font-size: 0.8em;
}
.main-content {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
box-shadow: 0 5px 20px rgba(0,0,0,0.1);
backdrop-filter: blur(10px);
}
.input-section {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 25px;
border-radius: 15px;
margin-bottom: 20px;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.3em;
padding: 15px 40px;
border-radius: 30px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
width: 100%;
margin-top: 20px;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
}
.generate-btn:active {
transform: translateY(0);
}
.video-output {
background: #f8f9fa;
padding: 20px;
border-radius: 15px;
text-align: center;
min-height: 400px;
display: flex;
align-items: center;
justify-content: center;
}
.accordion {
background: rgba(255, 255, 255, 0.7);
border-radius: 10px;
margin-top: 15px;
padding: 15px;
}
.slider-container {
background: rgba(255, 255, 255, 0.5);
padding: 15px;
border-radius: 10px;
margin: 10px 0;
}
body {
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
background-size: 400% 400%;
animation: gradient 15s ease infinite;
}
@keyframes gradient {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.warning-box {
background: rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.3);
border-radius: 10px;
padding: 15px;
margin: 10px 0;
color: #856404;
font-size: 0.9em;
}
.info-box {
background: rgba(52, 152, 219, 0.1);
border: 1px solid rgba(52, 152, 219, 0.3);
border-radius: 10px;
padding: 15px;
margin: 10px 0;
color: #2c5282;
font-size: 0.9em;
}
.footer {
text-align: center;
margin-top: 30px;
color: #666;
font-size: 0.9em;
}
"""
# Gradio UI (๊ธฐ์กด ๊ตฌ์กฐ ์ ์ง)
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="container"):
# Header with GPU status
gr.HTML("""
<div class="header">
<h1>๐ฌ AI Video Magic Studio</h1>
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
<div class="gpu-status">๐ฅ๏ธ Zero GPU Optimized</div>
</div>
""")
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ฒฝ๊ณ
if hasattr(spaces, 'GPU'):
gr.HTML("""
<div class="warning-box">
<strong>๐ก Zero GPU Performance Tips:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Maximum duration: 2.5 seconds</li>
<li>Maximum resolution: 640ร640 pixels</li>
<li>Recommended: 512ร512 at 2 seconds</li>
<li>Use 4-6 steps for optimal speed/quality balance</li>
<li>Processing time: ~60-90 seconds</li>
</ul>
</div>
""")
# ์ ๋ณด ๋ฐ์ค
gr.HTML("""
<div class="info-box">
<strong>๐ฏ Quick Start Guide:</strong>
<ol style="margin: 5px 0; padding-left: 20px;">
<li>Upload your image - AI will calculate optimal dimensions</li>
<li>Enter a creative prompt or use the default</li>
<li>Adjust duration (2s recommended for best results)</li>
<li>Click Generate and wait for completion</li>
</ol>
</div>
""")
with gr.Row(elem_classes="main-content"):
with gr.Column(scale=1):
gr.Markdown("### ๐ธ Input Settings")
with gr.Column(elem_classes="input-section"):
input_image = gr.Image(
type="pil",
label="๐ผ๏ธ Upload Your Image",
elem_classes="image-upload"
)
prompt_input = gr.Textbox(
label="โจ Animation Prompt",
value=default_prompt_i2v,
placeholder="Describe how you want your image to move...",
lines=2
)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1) if not hasattr(spaces, 'GPU') else 2.5,
step=0.1,
value=2,
label=f"โฑ๏ธ Video Duration (seconds) - Clamped to {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps",
elem_classes="slider-container"
)
with gr.Accordion("๐๏ธ Advanced Settings", open=False, elem_classes="accordion"):
negative_prompt = gr.Textbox(
label="๐ซ Negative Prompt",
value=default_negative_prompt,
lines=3
)
with gr.Row():
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
label="๐ฒ Seed"
)
randomize_seed = gr.Checkbox(
label="๐ Randomize",
value=True
)
with gr.Row():
height_slider = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H if not hasattr(spaces, 'GPU') else 640,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"๐ Height (multiple of {MOD_VALUE})"
)
width_slider = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W if not hasattr(spaces, 'GPU') else 640,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"๐ Width (multiple of {MOD_VALUE})"
)
steps_slider = gr.Slider(
minimum=1,
maximum=30 if not hasattr(spaces, 'GPU') else 8,
step=1,
value=4,
label="๐ง Quality Steps (4-6 recommended)"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="๐ฏ Guidance Scale",
visible=False
)
generate_btn = gr.Button(
"๐ฌ Generate Video",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=1):
gr.Markdown("### ๐ฅ Generated Video")
video_output = gr.Video(
label="",
autoplay=True,
elem_classes="video-output"
)
gr.HTML("""
<div class="footer">
<p>๐ก Tip: For best results, use clear images with good lighting and distinct subjects</p>
</div>
""")
# Examples
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 512, 512],
["forg.jpg", "the frog jumps around", 448, 576],
],
inputs=[input_image, prompt_input, height_slider, width_slider],
outputs=[video_output, seed],
fn=generate_video,
cache_examples=False # ์บ์ ๋นํ์ฑํ๋ก ๋ฉ๋ชจ๋ฆฌ ์ ์ฝ
)
# ๊ฐ์ ์ฌํญ ์์ฝ
gr.HTML("""
<div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;">
<p style="margin: 0; color: #666;">
<strong style="color: #667eea;">Powered by:</strong>
Wan 2.1 I2V (14B) + CausVid LoRA โข ๐ 4-8 steps fast inference โข ๐ฌ Up to 81 frames
</p>
</div>
""")
# Event handlers
input_image.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image, height_slider, width_slider],
outputs=[height_slider, width_slider]
)
input_image.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image, height_slider, width_slider],
outputs=[height_slider, width_slider]
)
generate_btn.click(
fn=generate_video,
inputs=[
input_image, prompt_input, height_slider, width_slider,
negative_prompt, duration_input, guidance_scale,
steps_slider, seed, randomize_seed
],
outputs=[video_output, seed]
)
if __name__ == "__main__":
demo.queue().launch() |