File size: 18,951 Bytes
5f364b5
f4cf641
c103ac7
f4cf641
5f364b5
 
c103ac7
5f364b5
f4cf641
12d6cf5
8268b44
ec4cebf
 
5f364b5
ec4cebf
 
 
8268b44
bfa6fb3
 
 
 
 
 
 
 
 
 
8116465
bfa6fb3
 
ec4cebf
8116465
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8268b44
bfa6fb3
 
 
 
8575388
bfa6fb3
 
 
 
 
 
 
 
 
 
ec4cebf
bfa6fb3
 
ec4cebf
bfa6fb3
 
 
 
 
f4cf641
bfa6fb3
 
 
 
 
f4cf641
 
bfa6fb3
 
 
 
 
 
 
 
 
 
a816f3f
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b75f51
 
8116465
bfa6fb3
 
 
1e531a7
8268b44
bfa6fb3
 
8268b44
bfa6fb3
 
 
 
 
 
ec4cebf
bfa6fb3
 
 
 
05707ed
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a816f3f
bfa6fb3
 
5b5b696
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
bfa6fb3
ec4cebf
 
bfa6fb3
ec4cebf
 
 
 
 
 
bfa6fb3
ec4cebf
bfa6fb3
 
ec4cebf
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
 
bfa6fb3
ec4cebf
bfa6fb3
 
 
ec4cebf
 
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
 
 
 
bfa6fb3
 
 
ec4cebf
 
bfa6fb3
 
ec4cebf
bfa6fb3
ec4cebf
 
 
 
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05707ed
ec4cebf
 
bfa6fb3
ec4cebf
 
bfa6fb3
ec4cebf
 
bfa6fb3
 
 
5b5b696
 
 
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5b696
bfa6fb3
 
 
 
 
 
 
 
ec4cebf
 
 
bfa6fb3
ec4cebf
bfa6fb3
c68ae83
bfa6fb3
 
 
 
 
ec4cebf
 
bfa6fb3
 
 
 
 
 
ec4cebf
bfa6fb3
 
 
 
a816f3f
bfa6fb3
 
 
 
 
 
 
 
 
ec4cebf
 
c68ae83
 
 
 
 
 
bfa6fb3
c68ae83
 
bfa6fb3
c68ae83
 
 
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
bfa6fb3
ec4cebf
 
bfa6fb3
ec4cebf
 
 
 
 
 
 
 
8575388
ec4cebf
bfa6fb3
ec4cebf
bfa6fb3
 
 
ec4cebf
 
bfa6fb3
 
 
 
ec4cebf
 
bfa6fb3
 
 
 
 
c68ae83
bfa6fb3
 
 
 
c68ae83
5f364b5
bfa6fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f364b5
bfa6fb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# ๋ชจ๋ธ ์„ค์ •
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

# ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 512  # Zero GPU๋ฅผ ์œ„ํ•ด ์ •์‚ฌ๊ฐํ˜• ๊ธฐ๋ณธ๊ฐ’
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81 

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "static, blurred, low quality, watermark, text"

# ๋ชจ๋ธ ๊ธ€๋กœ๋ฒŒ ๋กœ๋”ฉ
logger.info("Loading model components...")
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

# LoRA ๋กœ๋”ฉ
try:
    causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
    pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
    pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
    pipe.fuse_lora()
    logger.info("LoRA loaded successfully")
except Exception as e:
    logger.warning(f"LoRA loading failed: {e}")

# ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™” ํ™œ์„ฑํ™”
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()

logger.info("Model loaded and ready")

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    # Zero GPU๋ฅผ ์œ„ํ•œ ๋ณด์ˆ˜์ ์ธ ๊ณ„์‚ฐ
    if hasattr(spaces, 'GPU'):
        # ๋” ์ž‘์€ max_area ์‚ฌ์šฉ
        calculation_max_area = min(calculation_max_area, 320.0 * 320.0)
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    # Zero GPU ํ™˜๊ฒฝ์—์„œ ์ถ”๊ฐ€ ์ œํ•œ
    if hasattr(spaces, 'GPU'):
        max_slider_h = min(max_slider_h, 640)
        max_slider_w = min(max_slider_w, 640)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def get_duration(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    # Zero GPU๋ฅผ ์œ„ํ•œ ๋ณด์ˆ˜์ ์ธ ์‹œ๊ฐ„ ํ• ๋‹น
    base_time = 60
    
    if hasattr(spaces, 'GPU'):
        # Zero GPU ํ™˜๊ฒฝ์—์„œ ๋” ๋งŽ์€ ์‹œ๊ฐ„ ํ• ๋‹น
        if steps > 4 and duration_seconds > 2:
            return 90
        elif steps > 4 or duration_seconds > 2:
            return 80
        else:
            return 70
    else:
        # ์ผ๋ฐ˜ GPU ํ™˜๊ฒฝ
        if steps > 4 and duration_seconds > 2:
            return 90
        elif steps > 4 or duration_seconds > 2:
            return 75
        else:
            return 60

@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 1, steps = 4,
                   seed = 42, randomize_seed = False, 
                   progress=gr.Progress(track_tqdm=True)):
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")
    
    # Zero GPU ํ™˜๊ฒฝ์—์„œ ์ถ”๊ฐ€ ๊ฒ€์ฆ
    if hasattr(spaces, 'GPU'):
        # ํ”ฝ์…€ ์ œํ•œ
        max_pixels = 409600  # 640x640
        if height * width > max_pixels:
            raise gr.Error(f"Resolution too high for Zero GPU. Maximum {max_pixels:,} pixels (e.g., 640ร—640)")
        
        # Duration ์ œํ•œ
        if duration_seconds > 2.5:
            duration_seconds = 2.5
            gr.Warning("Duration limited to 2.5s in Zero GPU environment")
        
        # Steps ์ œํ•œ
        if steps > 8:
            steps = 8
            gr.Warning("Steps limited to 8 in Zero GPU environment")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    # Zero GPU์—์„œ ํ”„๋ ˆ์ž„ ์ˆ˜ ์ถ”๊ฐ€ ์ œํ•œ
    if hasattr(spaces, 'GPU'):
        max_frames_zerogpu = int(2.5 * FIXED_FPS)  # 2.5์ดˆ
        num_frames = min(num_frames, max_frames_zerogpu)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    logger.info(f"Generating video: {target_h}x{target_w}, {num_frames} frames, seed={current_seed}")
    
    # ์ด๋ฏธ์ง€ ๋ฆฌ์‚ฌ์ด์ฆˆ
    resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)

    try:
        with torch.inference_mode():
            output_frames_list = pipe(
                image=resized_image, 
                prompt=prompt, 
                negative_prompt=negative_prompt,
                height=target_h, 
                width=target_w, 
                num_frames=num_frames,
                guidance_scale=float(guidance_scale), 
                num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]
    except torch.cuda.OutOfMemoryError:
        gc.collect()
        torch.cuda.empty_cache()
        raise gr.Error("GPU out of memory. Try smaller resolution or shorter duration.")
    except Exception as e:
        logger.error(f"Generation failed: {e}")
        raise gr.Error(f"Video generation failed: {str(e)[:100]}")

    # ๋น„๋””์˜ค ์ €์žฅ
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    
    # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
    del output_frames_list
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    return video_path, current_seed

# CSS ์Šคํƒ€์ผ (๊ธฐ์กด UI ์œ ์ง€)
css = """
.container {
    max-width: 1200px;
    margin: auto;
    padding: 20px;
}

.header {
    text-align: center;
    margin-bottom: 30px;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 40px;
    border-radius: 20px;
    color: white;
    box-shadow: 0 10px 30px rgba(0,0,0,0.2);
    position: relative;
    overflow: hidden;
}

.header::before {
    content: '';
    position: absolute;
    top: -50%;
    left: -50%;
    width: 200%;
    height: 200%;
    background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
    animation: pulse 4s ease-in-out infinite;
}

@keyframes pulse {
    0%, 100% { transform: scale(1); opacity: 0.5; }
    50% { transform: scale(1.1); opacity: 0.8; }
}

.header h1 {
    font-size: 3em;
    margin-bottom: 10px;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
    position: relative;
    z-index: 1;
}

.header p {
    font-size: 1.2em;
    opacity: 0.95;
    position: relative;
    z-index: 1;
}

.gpu-status {
    position: absolute;
    top: 10px;
    right: 10px;
    background: rgba(0,0,0,0.3);
    padding: 5px 15px;
    border-radius: 20px;
    font-size: 0.8em;
}

.main-content {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 20px;
    padding: 30px;
    box-shadow: 0 5px 20px rgba(0,0,0,0.1);
    backdrop-filter: blur(10px);
}

.input-section {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    padding: 25px;
    border-radius: 15px;
    margin-bottom: 20px;
}

.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    font-size: 1.3em;
    padding: 15px 40px;
    border-radius: 30px;
    border: none;
    cursor: pointer;
    transition: all 0.3s ease;
    box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
    width: 100%;
    margin-top: 20px;
}

.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
}

.generate-btn:active {
    transform: translateY(0);
}

.video-output {
    background: #f8f9fa;
    padding: 20px;
    border-radius: 15px;
    text-align: center;
    min-height: 400px;
    display: flex;
    align-items: center;
    justify-content: center;
}

.accordion {
    background: rgba(255, 255, 255, 0.7);
    border-radius: 10px;
    margin-top: 15px;
    padding: 15px;
}

.slider-container {
    background: rgba(255, 255, 255, 0.5);
    padding: 15px;
    border-radius: 10px;
    margin: 10px 0;
}

body {
    background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
    background-size: 400% 400%;
    animation: gradient 15s ease infinite;
}

@keyframes gradient {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

.warning-box {
    background: rgba(255, 193, 7, 0.1);
    border: 1px solid rgba(255, 193, 7, 0.3);
    border-radius: 10px;
    padding: 15px;
    margin: 10px 0;
    color: #856404;
    font-size: 0.9em;
}

.info-box {
    background: rgba(52, 152, 219, 0.1);
    border: 1px solid rgba(52, 152, 219, 0.3);
    border-radius: 10px;
    padding: 15px;
    margin: 10px 0;
    color: #2c5282;
    font-size: 0.9em;
}

.footer {
    text-align: center;
    margin-top: 30px;
    color: #666;
    font-size: 0.9em;
}
"""

# Gradio UI (๊ธฐ์กด ๊ตฌ์กฐ ์œ ์ง€)
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes="container"):
        # Header with GPU status
        gr.HTML("""
        <div class="header">
            <h1>๐ŸŽฌ AI Video Magic Studio</h1>
            <p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
            <div class="gpu-status">๐Ÿ–ฅ๏ธ Zero GPU Optimized</div>
        </div>
        """)
        
        # GPU ๋ฉ”๋ชจ๋ฆฌ ๊ฒฝ๊ณ 
        if hasattr(spaces, 'GPU'):
            gr.HTML("""
            <div class="warning-box">
                <strong>๐Ÿ’ก Zero GPU Performance Tips:</strong>
                <ul style="margin: 5px 0; padding-left: 20px;">
                    <li>Maximum duration: 2.5 seconds</li>
                    <li>Maximum resolution: 640ร—640 pixels</li>
                    <li>Recommended: 512ร—512 at 2 seconds</li>
                    <li>Use 4-6 steps for optimal speed/quality balance</li>
                    <li>Processing time: ~60-90 seconds</li>
                </ul>
            </div>
            """)
        
        # ์ •๋ณด ๋ฐ•์Šค
        gr.HTML("""
        <div class="info-box">
            <strong>๐ŸŽฏ Quick Start Guide:</strong>
            <ol style="margin: 5px 0; padding-left: 20px;">
                <li>Upload your image - AI will calculate optimal dimensions</li>
                <li>Enter a creative prompt or use the default</li>
                <li>Adjust duration (2s recommended for best results)</li>
                <li>Click Generate and wait for completion</li>
            </ol>
        </div>
        """)
        
        with gr.Row(elem_classes="main-content"):
            with gr.Column(scale=1):
                gr.Markdown("### ๐Ÿ“ธ Input Settings")
                
                with gr.Column(elem_classes="input-section"):
                    input_image = gr.Image(
                        type="pil", 
                        label="๐Ÿ–ผ๏ธ Upload Your Image",
                        elem_classes="image-upload"
                    )
                    
                    prompt_input = gr.Textbox(
                        label="โœจ Animation Prompt",
                        value=default_prompt_i2v,
                        placeholder="Describe how you want your image to move...",
                        lines=2
                    )
                    
                    duration_input = gr.Slider(
                        minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
                        maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1) if not hasattr(spaces, 'GPU') else 2.5,
                        step=0.1,
                        value=2,
                        label=f"โฑ๏ธ Video Duration (seconds) - Clamped to {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps",
                        elem_classes="slider-container"
                    )
                
                with gr.Accordion("๐ŸŽ›๏ธ Advanced Settings", open=False, elem_classes="accordion"):
                    negative_prompt = gr.Textbox(
                        label="๐Ÿšซ Negative Prompt",
                        value=default_negative_prompt,
                        lines=3
                    )
                    
                    with gr.Row():
                        seed = gr.Slider(
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=42,
                            label="๐ŸŽฒ Seed"
                        )
                        randomize_seed = gr.Checkbox(
                            label="๐Ÿ”€ Randomize",
                            value=True
                        )
                    
                    with gr.Row():
                        height_slider = gr.Slider(
                            minimum=SLIDER_MIN_H,
                            maximum=SLIDER_MAX_H if not hasattr(spaces, 'GPU') else 640,
                            step=MOD_VALUE,
                            value=DEFAULT_H_SLIDER_VALUE,
                            label=f"๐Ÿ“ Height (multiple of {MOD_VALUE})"
                        )
                        width_slider = gr.Slider(
                            minimum=SLIDER_MIN_W,
                            maximum=SLIDER_MAX_W if not hasattr(spaces, 'GPU') else 640,
                            step=MOD_VALUE,
                            value=DEFAULT_W_SLIDER_VALUE,
                            label=f"๐Ÿ“ Width (multiple of {MOD_VALUE})"
                        )
                    
                    steps_slider = gr.Slider(
                        minimum=1,
                        maximum=30 if not hasattr(spaces, 'GPU') else 8,
                        step=1,
                        value=4,
                        label="๐Ÿ”ง Quality Steps (4-6 recommended)"
                    )
                    
                    guidance_scale = gr.Slider(
                        minimum=0.0,
                        maximum=20.0,
                        step=0.5,
                        value=1.0,
                        label="๐ŸŽฏ Guidance Scale",
                        visible=False
                    )
                
                generate_btn = gr.Button(
                    "๐ŸŽฌ Generate Video",
                    variant="primary",
                    elem_classes="generate-btn"
                )
            
            with gr.Column(scale=1):
                gr.Markdown("### ๐ŸŽฅ Generated Video")
                video_output = gr.Video(
                    label="",
                    autoplay=True,
                    elem_classes="video-output"
                )
                
                gr.HTML("""
                <div class="footer">
                    <p>๐Ÿ’ก Tip: For best results, use clear images with good lighting and distinct subjects</p>
                </div>
                """)
        
        # Examples
        gr.Examples(
            examples=[
                ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 512, 512],
                ["forg.jpg", "the frog jumps around", 448, 576],
            ],
            inputs=[input_image, prompt_input, height_slider, width_slider],
            outputs=[video_output, seed],
            fn=generate_video,
            cache_examples=False  # ์บ์‹œ ๋น„ํ™œ์„ฑํ™”๋กœ ๋ฉ”๋ชจ๋ฆฌ ์ ˆ์•ฝ
        )

        # ๊ฐœ์„ ์‚ฌํ•ญ ์š”์•ฝ
        gr.HTML("""
        <div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;">
            <p style="margin: 0; color: #666;">
                <strong style="color: #667eea;">Powered by:</strong> 
                Wan 2.1 I2V (14B) + CausVid LoRA โ€ข ๐Ÿš€ 4-8 steps fast inference โ€ข ๐ŸŽฌ Up to 81 frames
            </p>
        </div>
        """)
    
    # Event handlers
    input_image.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image, height_slider, width_slider],
        outputs=[height_slider, width_slider]
    )
    
    input_image.clear(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image, height_slider, width_slider],
        outputs=[height_slider, width_slider]
    )
    
    generate_btn.click(
        fn=generate_video,
        inputs=[
            input_image, prompt_input, height_slider, width_slider,
            negative_prompt, duration_input, guidance_scale, 
            steps_slider, seed, randomize_seed
        ],
        outputs=[video_output, seed]
    )

if __name__ == "__main__":
    demo.queue().launch()