Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,11 @@ import hashlib
|
|
16 |
from dataclasses import dataclass
|
17 |
from typing import Optional, Tuple
|
18 |
from functools import wraps
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# 로깅 설정
|
21 |
logging.basicConfig(level=logging.INFO)
|
@@ -40,10 +45,17 @@ class VideoGenerationConfig:
|
|
40 |
max_frames: int = 81
|
41 |
default_prompt: str = "make this image come alive, cinematic motion, smooth animation"
|
42 |
default_negative_prompt: str = "static, blurred, low quality, watermark, text"
|
|
|
|
|
|
|
|
|
43 |
|
44 |
config = VideoGenerationConfig()
|
45 |
MAX_SEED = np.iinfo(np.int32).max
|
46 |
|
|
|
|
|
|
|
47 |
# 성능 측정 데코레이터
|
48 |
def measure_time(func):
|
49 |
@wraps(func)
|
@@ -54,12 +66,37 @@ def measure_time(func):
|
|
54 |
return result
|
55 |
return wrapper
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
class ModelManager:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def __init__(self):
|
60 |
-
self
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
@property
|
64 |
def pipe(self):
|
65 |
if not self._is_loaded:
|
@@ -68,30 +105,93 @@ class ModelManager:
|
|
68 |
|
69 |
@measure_time
|
70 |
def _load_model(self):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
95 |
model_manager = ModelManager()
|
96 |
|
97 |
# 비디오 생성기 클래스
|
@@ -136,6 +236,14 @@ class VideoGenerator:
|
|
136 |
if duration > self.config.max_frames / self.config.fixed_fps:
|
137 |
return False, f"⏱️ Duration too long (max {self.config.max_frames/self.config.fixed_fps:.1f}s)"
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
return True, None
|
140 |
|
141 |
def generate_unique_filename(self, seed: int) -> str:
|
@@ -165,12 +273,19 @@ def handle_image_upload(image):
|
|
165 |
|
166 |
def get_duration(input_image, prompt, height, width, negative_prompt,
|
167 |
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
@spaces.GPU(duration=get_duration)
|
176 |
@measure_time
|
@@ -180,16 +295,23 @@ def generate_video(input_image, prompt, height, width,
|
|
180 |
seed=42, randomize_seed=False,
|
181 |
progress=gr.Progress(track_tqdm=True)):
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
is_valid, error_msg = video_generator.validate_inputs(
|
187 |
-
input_image, prompt, height, width, duration_seconds, steps
|
188 |
-
)
|
189 |
-
if not is_valid:
|
190 |
-
raise gr.Error(error_msg)
|
191 |
|
192 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
progress(0.2, desc="🎯 Preparing image...")
|
194 |
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
|
195 |
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
|
@@ -197,24 +319,35 @@ def generate_video(input_image, prompt, height, width,
|
|
197 |
config.min_frames, config.max_frames)
|
198 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
199 |
|
|
|
200 |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
|
201 |
|
202 |
progress(0.3, desc="🎨 Loading model...")
|
203 |
pipe = model_manager.pipe
|
204 |
|
205 |
progress(0.4, desc="🎬 Generating video frames...")
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
progress(0.9, desc="💾 Saving video...")
|
220 |
filename = video_generator.generate_unique_filename(current_seed)
|
@@ -226,14 +359,23 @@ def generate_video(input_image, prompt, height, width,
|
|
226 |
progress(1.0, desc="✨ Complete!")
|
227 |
return video_path, current_seed
|
228 |
|
|
|
|
|
|
|
|
|
229 |
finally:
|
|
|
|
|
|
|
230 |
# 메모리 정리
|
231 |
if 'output_frames_list' in locals():
|
232 |
del output_frames_list
|
233 |
-
|
234 |
-
|
|
|
|
|
235 |
|
236 |
-
# CSS 스타일
|
237 |
css = """
|
238 |
.container {
|
239 |
max-width: 1200px;
|
@@ -249,17 +391,49 @@ css = """
|
|
249 |
border-radius: 20px;
|
250 |
color: white;
|
251 |
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
}
|
253 |
|
254 |
.header h1 {
|
255 |
font-size: 3em;
|
256 |
margin-bottom: 10px;
|
257 |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
|
|
|
|
258 |
}
|
259 |
|
260 |
.header p {
|
261 |
font-size: 1.2em;
|
262 |
opacity: 0.95;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
}
|
264 |
|
265 |
.main-content {
|
@@ -296,6 +470,10 @@ css = """
|
|
296 |
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
|
297 |
}
|
298 |
|
|
|
|
|
|
|
|
|
299 |
.video-output {
|
300 |
background: #f8f9fa;
|
301 |
padding: 20px;
|
@@ -333,8 +511,14 @@ body {
|
|
333 |
100% { background-position: 0% 50%; }
|
334 |
}
|
335 |
|
336 |
-
.
|
337 |
-
background:
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
}
|
339 |
|
340 |
.footer {
|
@@ -348,11 +532,24 @@ body {
|
|
348 |
# Gradio UI
|
349 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
350 |
with gr.Column(elem_classes="container"):
|
351 |
-
# Header
|
352 |
gr.HTML("""
|
353 |
<div class="header">
|
354 |
<h1>🎬 AI Video Magic Studio</h1>
|
355 |
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
</div>
|
357 |
""")
|
358 |
|
@@ -409,14 +606,14 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
409 |
maximum=config.slider_max_h,
|
410 |
step=config.mod_value,
|
411 |
value=config.default_height,
|
412 |
-
label="📏 Height"
|
413 |
)
|
414 |
width_slider = gr.Slider(
|
415 |
minimum=config.slider_min_w,
|
416 |
maximum=config.slider_max_w,
|
417 |
step=config.mod_value,
|
418 |
value=config.default_width,
|
419 |
-
label="📐 Width"
|
420 |
)
|
421 |
|
422 |
steps_slider = gr.Slider(
|
@@ -459,58 +656,24 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
459 |
# Examples
|
460 |
gr.Examples(
|
461 |
examples=[
|
462 |
-
["peng.png", "a penguin playfully dancing in the snow, Antarctica",
|
463 |
-
["forg.jpg", "the frog jumps around", 448,
|
464 |
],
|
465 |
inputs=[input_image, prompt_input, height_slider, width_slider],
|
466 |
outputs=[video_output, seed],
|
467 |
fn=generate_video,
|
468 |
-
cache_examples=
|
469 |
)
|
470 |
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
|
480 |
-
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
|
481 |
-
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🛡️</span>
|
482 |
-
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Robust Error Handling</div>
|
483 |
-
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Advanced validation and recovery mechanisms</div>
|
484 |
-
</div>
|
485 |
-
|
486 |
-
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
|
487 |
-
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">⚡</span>
|
488 |
-
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Performance Optimized</div>
|
489 |
-
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Faster processing with smart resource management</div>
|
490 |
-
</div>
|
491 |
-
|
492 |
-
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
|
493 |
-
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🎨</span>
|
494 |
-
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Modern UI/UX</div>
|
495 |
-
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Beautiful interface with smooth animations</div>
|
496 |
-
</div>
|
497 |
-
|
498 |
-
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
|
499 |
-
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🔧</span>
|
500 |
-
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Clean Architecture</div>
|
501 |
-
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Modular design for easy maintenance</div>
|
502 |
-
</div>
|
503 |
-
</div>
|
504 |
-
|
505 |
-
<div style="display: flex; flex-wrap: wrap; gap: 5px; margin-top: 15px; justify-content: center;">
|
506 |
-
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">PyTorch</span>
|
507 |
-
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">Diffusers</span>
|
508 |
-
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">Gradio</span>
|
509 |
-
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">CUDA Optimized</span>
|
510 |
-
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">LoRA Enhanced</span>
|
511 |
</div>
|
512 |
-
|
513 |
-
""")
|
514 |
|
515 |
# Event handlers
|
516 |
input_image.upload(
|
@@ -536,4 +699,4 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
536 |
)
|
537 |
|
538 |
if __name__ == "__main__":
|
539 |
-
demo.queue().launch()
|
|
|
16 |
from dataclasses import dataclass
|
17 |
from typing import Optional, Tuple
|
18 |
from functools import wraps
|
19 |
+
import threading
|
20 |
+
import os
|
21 |
+
|
22 |
+
# GPU 메모리 관리 설정
|
23 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
24 |
|
25 |
# 로깅 설정
|
26 |
logging.basicConfig(level=logging.INFO)
|
|
|
45 |
max_frames: int = 81
|
46 |
default_prompt: str = "make this image come alive, cinematic motion, smooth animation"
|
47 |
default_negative_prompt: str = "static, blurred, low quality, watermark, text"
|
48 |
+
# GPU 메모리 최적화 설정
|
49 |
+
enable_model_cpu_offload: bool = True
|
50 |
+
enable_vae_slicing: bool = True
|
51 |
+
enable_vae_tiling: bool = True
|
52 |
|
53 |
config = VideoGenerationConfig()
|
54 |
MAX_SEED = np.iinfo(np.int32).max
|
55 |
|
56 |
+
# 글로벌 락 (동시 실행 방지)
|
57 |
+
generation_lock = threading.Lock()
|
58 |
+
|
59 |
# 성능 측정 데코레이터
|
60 |
def measure_time(func):
|
61 |
@wraps(func)
|
|
|
66 |
return result
|
67 |
return wrapper
|
68 |
|
69 |
+
# GPU 메모리 정리 함수
|
70 |
+
def clear_gpu_memory():
|
71 |
+
"""강력한 GPU 메모리 정리"""
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
torch.cuda.empty_cache()
|
74 |
+
torch.cuda.ipc_collect()
|
75 |
+
gc.collect()
|
76 |
+
|
77 |
+
# GPU 메모리 상태 로깅
|
78 |
+
allocated = torch.cuda.memory_allocated() / 1024**3
|
79 |
+
reserved = torch.cuda.memory_reserved() / 1024**3
|
80 |
+
logger.info(f"GPU Memory - Allocated: {allocated:.2f}GB, Reserved: {reserved:.2f}GB")
|
81 |
+
|
82 |
+
# 모델 관리자 (싱글톤 패턴)
|
83 |
class ModelManager:
|
84 |
+
_instance = None
|
85 |
+
_lock = threading.Lock()
|
86 |
+
|
87 |
+
def __new__(cls):
|
88 |
+
if cls._instance is None:
|
89 |
+
with cls._lock:
|
90 |
+
if cls._instance is None:
|
91 |
+
cls._instance = super().__new__(cls)
|
92 |
+
return cls._instance
|
93 |
+
|
94 |
def __init__(self):
|
95 |
+
if not hasattr(self, '_initialized'):
|
96 |
+
self._pipe = None
|
97 |
+
self._is_loaded = False
|
98 |
+
self._initialized = True
|
99 |
+
|
100 |
@property
|
101 |
def pipe(self):
|
102 |
if not self._is_loaded:
|
|
|
105 |
|
106 |
@measure_time
|
107 |
def _load_model(self):
|
108 |
+
"""메모리 효율적인 모델 로딩"""
|
109 |
+
with self._lock:
|
110 |
+
if self._is_loaded:
|
111 |
+
return
|
112 |
+
|
113 |
+
try:
|
114 |
+
logger.info("Loading model with memory optimizations...")
|
115 |
+
clear_gpu_memory()
|
116 |
+
|
117 |
+
# 모델 컴포넌트 로드 (메모리 효율적)
|
118 |
+
with torch.cuda.amp.autocast(enabled=False):
|
119 |
+
image_encoder = CLIPVisionModel.from_pretrained(
|
120 |
+
config.model_id,
|
121 |
+
subfolder="image_encoder",
|
122 |
+
torch_dtype=torch.float16, # float32 대신 float16 사용
|
123 |
+
low_cpu_mem_usage=True
|
124 |
+
)
|
125 |
+
|
126 |
+
vae = AutoencoderKLWan.from_pretrained(
|
127 |
+
config.model_id,
|
128 |
+
subfolder="vae",
|
129 |
+
torch_dtype=torch.float16, # float32 대신 float16 사용
|
130 |
+
low_cpu_mem_usage=True
|
131 |
+
)
|
132 |
+
|
133 |
+
self._pipe = WanImageToVideoPipeline.from_pretrained(
|
134 |
+
config.model_id,
|
135 |
+
vae=vae,
|
136 |
+
image_encoder=image_encoder,
|
137 |
+
torch_dtype=torch.bfloat16,
|
138 |
+
low_cpu_mem_usage=True,
|
139 |
+
use_safetensors=True
|
140 |
+
)
|
141 |
+
|
142 |
+
# 스케줄러 설정
|
143 |
+
self._pipe.scheduler = UniPCMultistepScheduler.from_config(
|
144 |
+
self._pipe.scheduler.config, flow_shift=8.0
|
145 |
+
)
|
146 |
+
|
147 |
+
# LoRA 로��
|
148 |
+
causvid_path = hf_hub_download(
|
149 |
+
repo_id=config.lora_repo_id, filename=config.lora_filename
|
150 |
+
)
|
151 |
+
self._pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
152 |
+
self._pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
153 |
+
self._pipe.fuse_lora()
|
154 |
+
|
155 |
+
# GPU 최적화 설정
|
156 |
+
if config.enable_model_cpu_offload:
|
157 |
+
self._pipe.enable_model_cpu_offload()
|
158 |
+
else:
|
159 |
+
self._pipe.to("cuda")
|
160 |
+
|
161 |
+
if config.enable_vae_slicing:
|
162 |
+
self._pipe.enable_vae_slicing()
|
163 |
+
|
164 |
+
if config.enable_vae_tiling:
|
165 |
+
self._pipe.enable_vae_tiling()
|
166 |
+
|
167 |
+
# xFormers 메모리 효율적인 attention 활성화 (가능한 경우)
|
168 |
+
try:
|
169 |
+
self._pipe.enable_xformers_memory_efficient_attention()
|
170 |
+
logger.info("xFormers memory efficient attention enabled")
|
171 |
+
except:
|
172 |
+
logger.info("xFormers not available, using default attention")
|
173 |
+
|
174 |
+
self._is_loaded = True
|
175 |
+
logger.info("Model loaded successfully with optimizations")
|
176 |
+
clear_gpu_memory()
|
177 |
+
|
178 |
+
except Exception as e:
|
179 |
+
logger.error(f"Error loading model: {e}")
|
180 |
+
self._is_loaded = False
|
181 |
+
clear_gpu_memory()
|
182 |
+
raise
|
183 |
+
|
184 |
+
def unload_model(self):
|
185 |
+
"""모델 언로드 및 메모리 해제"""
|
186 |
+
with self._lock:
|
187 |
+
if self._pipe is not None:
|
188 |
+
del self._pipe
|
189 |
+
self._pipe = None
|
190 |
+
self._is_loaded = False
|
191 |
+
clear_gpu_memory()
|
192 |
+
logger.info("Model unloaded and memory cleared")
|
193 |
|
194 |
+
# 싱글톤 인스턴스
|
195 |
model_manager = ModelManager()
|
196 |
|
197 |
# 비디오 생성기 클래스
|
|
|
236 |
if duration > self.config.max_frames / self.config.fixed_fps:
|
237 |
return False, f"⏱️ Duration too long (max {self.config.max_frames/self.config.fixed_fps:.1f}s)"
|
238 |
|
239 |
+
# GPU 메모리 체크
|
240 |
+
if torch.cuda.is_available():
|
241 |
+
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()
|
242 |
+
required_memory = (height * width * 3 * 8 * duration * config.fixed_fps) / (1024**3) # 대략적인 추정
|
243 |
+
if free_memory < required_memory * 2: # 2배 여유 확보
|
244 |
+
clear_gpu_memory()
|
245 |
+
return False, "⚠️ Not enough GPU memory. Try smaller dimensions or shorter duration."
|
246 |
+
|
247 |
return True, None
|
248 |
|
249 |
def generate_unique_filename(self, seed: int) -> str:
|
|
|
273 |
|
274 |
def get_duration(input_image, prompt, height, width, negative_prompt,
|
275 |
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
|
276 |
+
# GPU 사용량에 따라 동적으로 duration 조정
|
277 |
+
base_duration = 60
|
278 |
+
if steps > 4:
|
279 |
+
base_duration += 15
|
280 |
+
if duration_seconds > 2:
|
281 |
+
base_duration += 15
|
282 |
+
|
283 |
+
# 해상도에 따른 추가 시간
|
284 |
+
pixels = height * width
|
285 |
+
if pixels > 500000:
|
286 |
+
base_duration += 20
|
287 |
+
|
288 |
+
return min(base_duration, 120) # 최대 120초
|
289 |
|
290 |
@spaces.GPU(duration=get_duration)
|
291 |
@measure_time
|
|
|
295 |
seed=42, randomize_seed=False,
|
296 |
progress=gr.Progress(track_tqdm=True)):
|
297 |
|
298 |
+
# 동시 실행 방지
|
299 |
+
if not generation_lock.acquire(blocking=False):
|
300 |
+
raise gr.Error("⏳ Another video is being generated. Please wait...")
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
try:
|
303 |
+
progress(0.1, desc="🔍 Validating inputs...")
|
304 |
+
|
305 |
+
# 입력 검증
|
306 |
+
is_valid, error_msg = video_generator.validate_inputs(
|
307 |
+
input_image, prompt, height, width, duration_seconds, steps
|
308 |
+
)
|
309 |
+
if not is_valid:
|
310 |
+
raise gr.Error(error_msg)
|
311 |
+
|
312 |
+
# 메모리 정리
|
313 |
+
clear_gpu_memory()
|
314 |
+
|
315 |
progress(0.2, desc="🎯 Preparing image...")
|
316 |
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
|
317 |
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
|
|
|
319 |
config.min_frames, config.max_frames)
|
320 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
321 |
|
322 |
+
# 이미지 리사이즈 (메모리 효율적)
|
323 |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
|
324 |
|
325 |
progress(0.3, desc="🎨 Loading model...")
|
326 |
pipe = model_manager.pipe
|
327 |
|
328 |
progress(0.4, desc="🎬 Generating video frames...")
|
329 |
+
|
330 |
+
# 메모리 효율적인 생성
|
331 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True):
|
332 |
+
try:
|
333 |
+
output_frames_list = pipe(
|
334 |
+
image=resized_image,
|
335 |
+
prompt=prompt,
|
336 |
+
negative_prompt=negative_prompt,
|
337 |
+
height=target_h,
|
338 |
+
width=target_w,
|
339 |
+
num_frames=num_frames,
|
340 |
+
guidance_scale=float(guidance_scale),
|
341 |
+
num_inference_steps=int(steps),
|
342 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
343 |
+
return_dict=True
|
344 |
+
).frames[0]
|
345 |
+
except torch.cuda.OutOfMemoryError:
|
346 |
+
clear_gpu_memory()
|
347 |
+
raise gr.Error("💾 GPU out of memory. Try smaller dimensions or shorter duration.")
|
348 |
+
except Exception as e:
|
349 |
+
logger.error(f"Generation error: {e}")
|
350 |
+
raise gr.Error(f"❌ Generation failed: {str(e)}")
|
351 |
|
352 |
progress(0.9, desc="💾 Saving video...")
|
353 |
filename = video_generator.generate_unique_filename(current_seed)
|
|
|
359 |
progress(1.0, desc="✨ Complete!")
|
360 |
return video_path, current_seed
|
361 |
|
362 |
+
except Exception as e:
|
363 |
+
logger.error(f"Unexpected error: {e}")
|
364 |
+
raise
|
365 |
+
|
366 |
finally:
|
367 |
+
# 항상 메모리 정리 및 락 해제
|
368 |
+
generation_lock.release()
|
369 |
+
|
370 |
# 메모리 정리
|
371 |
if 'output_frames_list' in locals():
|
372 |
del output_frames_list
|
373 |
+
if 'resized_image' in locals():
|
374 |
+
del resized_image
|
375 |
+
|
376 |
+
clear_gpu_memory()
|
377 |
|
378 |
+
# 개선된 CSS 스타일
|
379 |
css = """
|
380 |
.container {
|
381 |
max-width: 1200px;
|
|
|
391 |
border-radius: 20px;
|
392 |
color: white;
|
393 |
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
|
394 |
+
position: relative;
|
395 |
+
overflow: hidden;
|
396 |
+
}
|
397 |
+
|
398 |
+
.header::before {
|
399 |
+
content: '';
|
400 |
+
position: absolute;
|
401 |
+
top: -50%;
|
402 |
+
left: -50%;
|
403 |
+
width: 200%;
|
404 |
+
height: 200%;
|
405 |
+
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
|
406 |
+
animation: pulse 4s ease-in-out infinite;
|
407 |
+
}
|
408 |
+
|
409 |
+
@keyframes pulse {
|
410 |
+
0%, 100% { transform: scale(1); opacity: 0.5; }
|
411 |
+
50% { transform: scale(1.1); opacity: 0.8; }
|
412 |
}
|
413 |
|
414 |
.header h1 {
|
415 |
font-size: 3em;
|
416 |
margin-bottom: 10px;
|
417 |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
418 |
+
position: relative;
|
419 |
+
z-index: 1;
|
420 |
}
|
421 |
|
422 |
.header p {
|
423 |
font-size: 1.2em;
|
424 |
opacity: 0.95;
|
425 |
+
position: relative;
|
426 |
+
z-index: 1;
|
427 |
+
}
|
428 |
+
|
429 |
+
.gpu-status {
|
430 |
+
position: absolute;
|
431 |
+
top: 10px;
|
432 |
+
right: 10px;
|
433 |
+
background: rgba(0,0,0,0.3);
|
434 |
+
padding: 5px 15px;
|
435 |
+
border-radius: 20px;
|
436 |
+
font-size: 0.8em;
|
437 |
}
|
438 |
|
439 |
.main-content {
|
|
|
470 |
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
|
471 |
}
|
472 |
|
473 |
+
.generate-btn:active {
|
474 |
+
transform: translateY(0);
|
475 |
+
}
|
476 |
+
|
477 |
.video-output {
|
478 |
background: #f8f9fa;
|
479 |
padding: 20px;
|
|
|
511 |
100% { background-position: 0% 50%; }
|
512 |
}
|
513 |
|
514 |
+
.warning-box {
|
515 |
+
background: rgba(255, 193, 7, 0.1);
|
516 |
+
border: 1px solid rgba(255, 193, 7, 0.3);
|
517 |
+
border-radius: 10px;
|
518 |
+
padding: 15px;
|
519 |
+
margin: 10px 0;
|
520 |
+
color: #856404;
|
521 |
+
font-size: 0.9em;
|
522 |
}
|
523 |
|
524 |
.footer {
|
|
|
532 |
# Gradio UI
|
533 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
534 |
with gr.Column(elem_classes="container"):
|
535 |
+
# Header with GPU status
|
536 |
gr.HTML("""
|
537 |
<div class="header">
|
538 |
<h1>🎬 AI Video Magic Studio</h1>
|
539 |
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
|
540 |
+
<div class="gpu-status">🖥️ GPU Optimized</div>
|
541 |
+
</div>
|
542 |
+
""")
|
543 |
+
|
544 |
+
# GPU 메모리 경고
|
545 |
+
gr.HTML("""
|
546 |
+
<div class="warning-box">
|
547 |
+
<strong>💡 Performance Tips:</strong>
|
548 |
+
<ul style="margin: 5px 0; padding-left: 20px;">
|
549 |
+
<li>Start with lower resolution (512x512) for testing</li>
|
550 |
+
<li>Keep duration under 2 seconds for stable generation</li>
|
551 |
+
<li>Use 4-8 steps for optimal speed/quality balance</li>
|
552 |
+
</ul>
|
553 |
</div>
|
554 |
""")
|
555 |
|
|
|
606 |
maximum=config.slider_max_h,
|
607 |
step=config.mod_value,
|
608 |
value=config.default_height,
|
609 |
+
label="📏 Height (lower = more stable)"
|
610 |
)
|
611 |
width_slider = gr.Slider(
|
612 |
minimum=config.slider_min_w,
|
613 |
maximum=config.slider_max_w,
|
614 |
step=config.mod_value,
|
615 |
value=config.default_width,
|
616 |
+
label="📐 Width (lower = more stable)"
|
617 |
)
|
618 |
|
619 |
steps_slider = gr.Slider(
|
|
|
656 |
# Examples
|
657 |
gr.Examples(
|
658 |
examples=[
|
659 |
+
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 512, 512],
|
660 |
+
["forg.jpg", "the frog jumps around", 448, 448],
|
661 |
],
|
662 |
inputs=[input_image, prompt_input, height_slider, width_slider],
|
663 |
outputs=[video_output, seed],
|
664 |
fn=generate_video,
|
665 |
+
cache_examples=False # 캐시 비활성화로 메모리 절약
|
666 |
)
|
667 |
|
668 |
+
# 개선사항 요약 (작게)
|
669 |
+
gr.HTML("""
|
670 |
+
<div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;">
|
671 |
+
<p style="margin: 0; color: #666;">
|
672 |
+
<strong style="color: #667eea;">Enhanced with:</strong>
|
673 |
+
🛡️ GPU Crash Protection • ⚡ Memory Optimization • 🎨 Modern UI • 🔧 Clean Architecture
|
674 |
+
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
675 |
</div>
|
676 |
+
""")
|
|
|
677 |
|
678 |
# Event handlers
|
679 |
input_image.upload(
|
|
|
699 |
)
|
700 |
|
701 |
if __name__ == "__main__":
|
702 |
+
demo.queue(max_size=1).launch() # 큐 크기 제한으로 메모리 관리
|