Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,570 Bytes
5f364b5 f4cf641 c103ac7 f4cf641 5f364b5 c103ac7 5f364b5 f4cf641 12d6cf5 8268b44 ec4cebf 5b5b696 c68ae83 5f364b5 ec4cebf 8268b44 ec4cebf a816f3f ec4cebf a816f3f ec4cebf a816f3f ec4cebf a816f3f 5b5b696 4e94f64 8116465 ec4cebf 8116465 c68ae83 5b5b696 ec4cebf f4cf641 5b5b696 c68ae83 fde0767 c68ae83 f4cf641 ec4cebf c68ae83 ec4cebf 8268b44 ec4cebf 8c18bc3 a816f3f 8c18bc3 ec4cebf a816f3f ec4cebf a816f3f c68ae83 ec4cebf a816f3f ec4cebf 8575388 ec4cebf a816f3f ec4cebf c68ae83 ec4cebf a816f3f 4e94f64 a816f3f c68ae83 a816f3f 4e94f64 a816f3f ec4cebf a816f3f 5b5b696 ec4cebf c68ae83 f4cf641 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf c68ae83 a816f3f 4e94f64 c68ae83 a816f3f 4e94f64 a816f3f 4e94f64 5b5b696 c68ae83 a816f3f 4e94f64 5b5b696 a816f3f 1b75f51 ec4cebf 8116465 ec4cebf a816f3f ec4cebf 1e531a7 8268b44 c68ae83 5b5b696 8268b44 ec4cebf c68ae83 4e94f64 5b5b696 a816f3f 5b5b696 c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f c68ae83 ec4cebf 4e94f64 c68ae83 4e94f64 a816f3f 4e94f64 c68ae83 4e94f64 a816f3f ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f c68ae83 a816f3f ec4cebf c68ae83 a816f3f ec4cebf c68ae83 05707ed c68ae83 a816f3f 05707ed ec4cebf 05707ed 5b5b696 a816f3f 5b5b696 ec4cebf 5b5b696 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 05707ed ec4cebf c68ae83 ec4cebf c68ae83 5b5b696 c68ae83 5b5b696 a816f3f 5b5b696 a816f3f 5b5b696 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 a816f3f c68ae83 a816f3f c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 a816f3f c68ae83 a816f3f c68ae83 ec4cebf c68ae83 a816f3f c68ae83 a816f3f c68ae83 ec4cebf a816f3f ec4cebf a816f3f ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf c68ae83 ec4cebf 8575388 ec4cebf c68ae83 ec4cebf c68ae83 a816f3f ec4cebf c68ae83 5f364b5 c68ae83 ee3d852 05707ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps
import threading
import os
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256' # ๋ ์์ ์ฒญํฌ ์ฌ์ฉ
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ์ค์ ๊ด๋ฆฌ
@dataclass
class VideoGenerationConfig:
model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
lora_repo_id: str = "Kijai/WanVideo_comfy"
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
mod_value: int = 32
# Zero GPU๋ฅผ ์ํ ๋งค์ฐ ๋ณด์์ ์ธ ๊ธฐ๋ณธ๊ฐ
default_height: int = 320
default_width: int = 320
max_area: float = 320.0 * 320.0 # Zero GPU์ ์ต์ ํ
slider_min_h: int = 128
slider_max_h: int = 512 # ๋ ๋ฎ์ ์ต๋๊ฐ
slider_min_w: int = 128
slider_max_w: int = 512 # ๋ ๋ฎ์ ์ต๋๊ฐ
fixed_fps: int = 24
min_frames: int = 8
max_frames: int = 30 # ๋ ๋ฎ์ ์ต๋ ํ๋ ์ (1.25์ด)
default_prompt: str = "make this image move, smooth motion"
default_negative_prompt: str = "static, blur"
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์
enable_model_cpu_offload: bool = True
enable_vae_slicing: bool = True
enable_vae_tiling: bool = True
@property
def max_duration(self):
"""์ต๋ ํ์ฉ duration (์ด)"""
return self.max_frames / self.fixed_fps
@property
def min_duration(self):
"""์ต์ ํ์ฉ duration (์ด)"""
return self.min_frames / self.fixed_fps
config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max
# ๊ธ๋ก๋ฒ ๋ณ์
pipe = None
generation_lock = threading.Lock()
# ์ฑ๋ฅ ์ธก์ ๋ฐ์ฝ๋ ์ดํฐ
def measure_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
return result
return wrapper
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์
def clear_gpu_memory():
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ (Zero GPU ์์ )"""
gc.collect()
if torch.cuda.is_available():
try:
torch.cuda.empty_cache()
torch.cuda.synchronize()
except:
pass
# ๋น๋์ค ์์ฑ๊ธฐ ํด๋์ค
class VideoGenerator:
def __init__(self, config: VideoGenerationConfig):
self.config = config
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
orig_w, orig_h = image.size
if orig_w <= 0 or orig_h <= 0:
return self.config.default_height, self.config.default_width
aspect_ratio = orig_h / orig_w
# Zero GPU์ ์ต์ ํ๋ ๋งค์ฐ ์์ ํด์๋
max_area = 320.0 * 320.0 # 102,400 ํฝ์
# ์ข
ํก๋น๊ฐ ๋๋ฌด ๊ทน๋จ์ ์ธ ๊ฒฝ์ฐ ์กฐ์
if aspect_ratio > 2.0:
aspect_ratio = 2.0
elif aspect_ratio < 0.5:
aspect_ratio = 0.5
calc_h = round(np.sqrt(max_area * aspect_ratio))
calc_w = round(np.sqrt(max_area / aspect_ratio))
# mod_value์ ๋ง์ถค
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
# ์ต๋ 512๋ก ์ ํ
new_h = int(np.clip(calc_h, self.config.slider_min_h, 512))
new_w = int(np.clip(calc_w, self.config.slider_min_w, 512))
# mod_value์ ๋ง์ถค
new_h = (new_h // self.config.mod_value) * self.config.mod_value
new_w = (new_w // self.config.mod_value) * self.config.mod_value
# ์ต์ข
ํฝ์
์ ํ์ธ
if new_h * new_w > 102400: # 320x320
# ๋น์จ์ ์ ์งํ๋ฉด์ ์ถ์
scale = np.sqrt(102400 / (new_h * new_w))
new_h = int((new_h * scale) // self.config.mod_value) * self.config.mod_value
new_w = int((new_w * scale) // self.config.mod_value) * self.config.mod_value
return new_h, new_w
def validate_inputs(self, image: Image.Image, prompt: str, height: int,
width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
if image is None:
return False, "๐ผ๏ธ Please upload an input image"
if not prompt or len(prompt.strip()) == 0:
return False, "โ๏ธ Please provide a prompt"
if len(prompt) > 200: # ๋ ์งง์ ํ๋กฌํํธ ์ ํ
return False, "โ ๏ธ Prompt is too long (max 200 characters)"
# Zero GPU์ ์ต์ ํ๋ ์ ํ
if duration < 0.3:
return False, "โฑ๏ธ Duration too short (min 0.3s)"
if duration > 1.2: # ๋ ์งง์ ์ต๋ duration
return False, "โฑ๏ธ Duration too long (max 1.2s for stability)"
# ํฝ์
์ ์ ํ (๋ ๋ณด์์ ์ผ๋ก)
max_pixels = 320 * 320 # 102,400 ํฝ์
if height * width > max_pixels:
return False, f"๐ Total pixels limited to {max_pixels:,} (e.g., 320ร320, 256ร384)"
if height > 512 or width > 512: # ๋ ๋ฎ์ ์ต๋๊ฐ
return False, "๐ Maximum dimension is 512 pixels"
# ์ข
ํก๋น ์ฒดํฌ
aspect_ratio = max(height/width, width/height)
if aspect_ratio > 2.0:
return False, "๐ Aspect ratio too extreme (max 2:1 or 1:2)"
if steps > 5: # ๋ ๋ฎ์ ์ต๋ ์คํ
return False, "๐ง Maximum 5 steps in Zero GPU environment"
return True, None
def generate_unique_filename(self, seed: int) -> str:
timestamp = int(time.time())
unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
hash_obj = hashlib.md5(unique_str.encode())
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
video_generator = VideoGenerator(config)
# Gradio ํจ์๋ค
def handle_image_upload(image):
if image is None:
return gr.update(value=config.default_height), gr.update(value=config.default_width)
try:
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
new_h, new_w = video_generator.calculate_dimensions(image)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error processing image: {e}")
gr.Warning("โ ๏ธ Error processing image")
return gr.update(value=config.default_height), gr.update(value=config.default_width)
def get_duration(input_image, prompt, height, width, negative_prompt,
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
# Zero GPU ํ๊ฒฝ์์ ๋งค์ฐ ๋ณด์์ ์ธ ์๊ฐ ํ ๋น
base_duration = 50 # ๊ธฐ๋ณธ 50์ด๋ก ์ฆ๊ฐ
# ํฝ์
์์ ๋ฐ๋ฅธ ์ถ๊ฐ ์๊ฐ
pixels = height * width
if pixels > 147456: # 384x384 ์ด์
base_duration += 20
elif pixels > 100000: # ~316x316 ์ด์
base_duration += 10
# ์คํ
์์ ๋ฐ๋ฅธ ์ถ๊ฐ ์๊ฐ
if steps > 4:
base_duration += 15
elif steps > 2:
base_duration += 10
# ์ข
ํก๋น๊ฐ ๊ทน๋จ์ ์ธ ๊ฒฝ์ฐ ์ถ๊ฐ ์๊ฐ
aspect_ratio = max(height/width, width/height)
if aspect_ratio > 1.5: # 3:2 ์ด์์ ๋น์จ
base_duration += 10
# ์ต๋ 90์ด๋ก ์ ํ
return min(base_duration, 90)
@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width,
negative_prompt=config.default_negative_prompt,
duration_seconds=0.8, guidance_scale=1, steps=3,
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
global pipe
# ๋์ ์คํ ๋ฐฉ์ง
if not generation_lock.acquire(blocking=False):
raise gr.Error("โณ Another video is being generated. Please wait...")
try:
progress(0.05, desc="๐ Validating inputs...")
logger.info(f"Starting generation - Resolution: {height}x{width}, Duration: {duration_seconds}s, Steps: {steps}")
# ์
๋ ฅ ๊ฒ์ฆ
is_valid, error_msg = video_generator.validate_inputs(
input_image, prompt, height, width, duration_seconds, steps
)
if not is_valid:
logger.warning(f"Validation failed: {error_msg}")
raise gr.Error(error_msg)
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
clear_gpu_memory()
progress(0.1, desc="๐ Loading model...")
# ๋ชจ๋ธ ๋ก๋ฉ (GPU ํจ์ ๋ด์์)
if pipe is None:
try:
logger.info("Loading model components...")
# ์ปดํฌ๋ํธ ๋ก๋
image_encoder = CLIPVisionModel.from_pretrained(
config.model_id,
subfolder="image_encoder",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
vae = AutoencoderKLWan.from_pretrained(
config.model_id,
subfolder="vae",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
pipe = WanImageToVideoPipeline.from_pretrained(
config.model_id,
vae=vae,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_safetensors=True
)
# ์ค์ผ์ค๋ฌ ์ค์
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=8.0
)
# LoRA ๋ก๋ ๊ฑด๋๋ฐ๊ธฐ (์์ ์ฑ์ ์ํด)
logger.info("Skipping LoRA for stability")
# GPU๋ก ์ด๋
pipe.to("cuda")
# ์ต์ ํ ํ์ฑํ
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# ๋ชจ๋ธ CPU ์คํ๋ก๋ ํ์ฑํ (๋ฉ๋ชจ๋ฆฌ ์ ์ฝ)
pipe.enable_model_cpu_offload()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model loading failed: {e}")
raise gr.Error("Failed to load model")
progress(0.3, desc="๐ฏ Preparing image...")
# ์ด๋ฏธ์ง ์ค๋น
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
# ํ๋ ์ ์ ๊ณ์ฐ (๋งค์ฐ ๋ณด์์ )
num_frames = min(
int(round(duration_seconds * config.fixed_fps)),
24 # ์ต๋ 24ํ๋ ์ (1์ด)
)
num_frames = max(8, num_frames) # ์ต์ 8ํ๋ ์
logger.info(f"Generating {num_frames} frames at {target_h}x{target_w}")
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
progress(0.4, desc="๐ฌ Generating video...")
# ๋น๋์ค ์์ฑ
with torch.inference_mode(), torch.amp.autocast('cuda', enabled=True, dtype=torch.float16):
try:
# ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ํ ์ค์
torch.cuda.empty_cache()
# ์์ฑ ํ๋ผ๋ฏธํฐ ์ต์ ํ
output_frames_list = pipe(
image=resized_image,
prompt=prompt[:150], # ํ๋กฌํํธ ๊ธธ์ด ์ ํ
negative_prompt=negative_prompt[:50] if negative_prompt else "",
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
return_dict=True,
# ์ถ๊ฐ ์ต์ ํ ํ๋ผ๋ฏธํฐ
output_type="pil"
).frames[0]
logger.info("Video generation completed successfully")
except torch.cuda.OutOfMemoryError:
logger.error("GPU OOM error")
clear_gpu_memory()
raise gr.Error("๐พ GPU out of memory. Try smaller dimensions (256x256 recommended).")
except RuntimeError as e:
if "out of memory" in str(e).lower():
logger.error("Runtime OOM error")
clear_gpu_memory()
raise gr.Error("๐พ GPU memory error. Please try again with smaller settings.")
else:
logger.error(f"Runtime error: {e}")
raise gr.Error(f"โ Generation failed: {str(e)[:50]}")
except Exception as e:
logger.error(f"Generation error: {type(e).__name__}: {e}")
raise gr.Error(f"โ Generation failed. Try reducing resolution or steps.")
progress(0.9, desc="๐พ Saving video...")
# ๋น๋์ค ์ ์ฅ
try:
filename = video_generator.generate_unique_filename(current_seed)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
logger.info(f"Video saved: {video_path}")
except Exception as e:
logger.error(f"Save error: {e}")
raise gr.Error("Failed to save video")
progress(1.0, desc="โจ Complete!")
logger.info(f"Video generated: {num_frames} frames, {target_h}x{target_w}")
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
del output_frames_list
del resized_image
torch.cuda.empty_cache()
gc.collect()
return video_path, current_seed
except gr.Error:
raise
except Exception as e:
logger.error(f"Unexpected error: {type(e).__name__}: {e}")
raise gr.Error(f"โ Unexpected error. Please try again with smaller settings.")
finally:
generation_lock.release()
clear_gpu_memory()
# CSS
css = """
.container {
max-width: 1000px;
margin: auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 30px;
border-radius: 15px;
color: white;
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.header h1 {
font-size: 2.5em;
margin-bottom: 10px;
}
.warning-box {
background: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 8px;
padding: 12px;
margin: 10px 0;
color: #856404;
font-size: 0.9em;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.2em;
padding: 12px 30px;
border-radius: 25px;
border: none;
cursor: pointer;
width: 100%;
margin-top: 15px;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
}
"""
# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="container"):
# Header
gr.HTML("""
<div class="header">
<h1>๐ฌ AI Video Generator</h1>
<p>Transform images into videos with Wan 2.1 (Zero GPU Optimized)</p>
</div>
""")
# ๊ฒฝ๊ณ
gr.HTML("""
<div class="warning-box">
<strong>โก Zero GPU Strict Limitations:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Max resolution: 320ร320 (recommended 256ร256)</li>
<li>Max duration: 1.2 seconds</li>
<li>Max steps: 5 (2-3 recommended)</li>
<li>Processing time: ~50-80 seconds</li>
<li>Please wait for completion before next generation</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="๐ผ๏ธ Upload Image"
)
prompt_input = gr.Textbox(
label="โจ Animation Prompt",
value=config.default_prompt,
placeholder="Describe the motion...",
lines=2,
max_lines=3
)
duration_input = gr.Slider(
minimum=0.3,
maximum=1.2,
step=0.1,
value=0.8,
label="โฑ๏ธ Duration (seconds)"
)
with gr.Accordion("โ๏ธ Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=config.default_negative_prompt,
lines=1
)
with gr.Row():
height_slider = gr.Slider(
minimum=128,
maximum=512,
step=32,
value=256,
label="Height"
)
width_slider = gr.Slider(
minimum=128,
maximum=512,
step=32,
value=256,
label="Width"
)
steps_slider = gr.Slider(
minimum=1,
maximum=5,
step=1,
value=2,
label="Steps (2-3 recommended)"
)
with gr.Row():
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
label="Seed"
)
randomize_seed = gr.Checkbox(
label="Random",
value=True
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.5,
value=1.0,
label="Guidance Scale",
visible=False
)
generate_btn = gr.Button(
"๐ฌ Generate Video",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=1):
video_output = gr.Video(
label="Generated Video",
autoplay=True
)
gr.Markdown("""
### ๐ก Tips for Zero GPU:
- **Best**: 256ร256 resolution
- **Safe**: 2-3 steps only
- **Duration**: 0.8s is optimal
- **Prompts**: Keep short and simple
- **Important**: Wait for completion!
### โ ๏ธ If GPU stops:
- Reduce resolution to 256ร256
- Use only 2 steps
- Keep duration under 1 second
- Avoid extreme aspect ratios
""")
# Event handlers
input_image.upload(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
generate_btn.click(
fn=generate_video,
inputs=[
input_image, prompt_input, height_slider, width_slider,
negative_prompt, duration_input, guidance_scale,
steps_slider, seed, randomize_seed
],
outputs=[video_output, seed]
)
if __name__ == "__main__":
logger.info("Starting app in Zero GPU environment")
demo.queue(max_size=2) # ์์ ํ ์ฌ์ด์ฆ
demo.launch() |