File size: 21,570 Bytes
5f364b5
f4cf641
c103ac7
f4cf641
5f364b5
 
c103ac7
5f364b5
f4cf641
12d6cf5
8268b44
ec4cebf
 
 
 
 
 
 
5b5b696
 
 
 
c68ae83
5f364b5
ec4cebf
 
 
8268b44
ec4cebf
 
 
 
 
 
 
a816f3f
 
 
 
ec4cebf
a816f3f
ec4cebf
a816f3f
ec4cebf
 
a816f3f
 
 
5b5b696
 
 
 
4e94f64
 
 
 
 
 
 
 
 
 
8116465
ec4cebf
 
8116465
c68ae83
 
5b5b696
 
ec4cebf
 
 
 
 
 
 
 
 
f4cf641
5b5b696
 
c68ae83
 
fde0767
 
 
c68ae83
 
 
f4cf641
ec4cebf
 
c68ae83
ec4cebf
8268b44
ec4cebf
 
 
 
 
 
8c18bc3
a816f3f
 
 
 
 
 
 
 
8c18bc3
 
 
ec4cebf
a816f3f
ec4cebf
 
 
a816f3f
 
 
c68ae83
 
 
 
ec4cebf
a816f3f
 
 
 
 
 
 
ec4cebf
8575388
ec4cebf
 
 
 
 
 
 
 
a816f3f
 
ec4cebf
c68ae83
 
 
ec4cebf
a816f3f
 
4e94f64
a816f3f
 
c68ae83
a816f3f
 
 
 
4e94f64
a816f3f
 
 
 
ec4cebf
a816f3f
 
5b5b696
ec4cebf
 
 
 
 
 
 
 
c68ae83
f4cf641
ec4cebf
 
 
 
 
f4cf641
ec4cebf
 
 
 
f4cf641
ec4cebf
f4cf641
ec4cebf
 
 
 
 
 
c68ae83
a816f3f
4e94f64
c68ae83
 
a816f3f
4e94f64
a816f3f
4e94f64
5b5b696
c68ae83
 
a816f3f
 
4e94f64
5b5b696
a816f3f
 
 
 
 
 
 
1b75f51
 
ec4cebf
8116465
ec4cebf
a816f3f
ec4cebf
1e531a7
8268b44
c68ae83
 
5b5b696
 
 
8268b44
ec4cebf
c68ae83
 
4e94f64
5b5b696
 
 
 
 
a816f3f
5b5b696
 
 
 
 
c68ae83
 
 
 
 
a816f3f
 
c68ae83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a816f3f
 
c68ae83
 
 
 
 
 
 
 
a816f3f
 
c68ae83
 
 
 
 
 
 
 
 
 
ec4cebf
 
4e94f64
c68ae83
4e94f64
 
a816f3f
4e94f64
c68ae83
4e94f64
a816f3f
 
ec4cebf
 
c68ae83
ec4cebf
 
c68ae83
ec4cebf
c68ae83
a816f3f
c68ae83
a816f3f
 
 
 
c68ae83
 
a816f3f
 
c68ae83
 
 
 
 
 
a816f3f
 
 
c68ae83
 
a816f3f
 
c68ae83
a816f3f
c68ae83
a816f3f
 
 
 
 
 
 
 
 
c68ae83
a816f3f
 
ec4cebf
 
c68ae83
 
a816f3f
 
 
 
 
 
 
 
 
 
ec4cebf
 
c68ae83
05707ed
c68ae83
 
 
a816f3f
 
05707ed
ec4cebf
 
05707ed
 
5b5b696
a816f3f
 
5b5b696
ec4cebf
5b5b696
 
ec4cebf
c68ae83
ec4cebf
 
c68ae83
ec4cebf
 
 
 
 
 
c68ae83
ec4cebf
c68ae83
 
ec4cebf
c68ae83
ec4cebf
 
 
c68ae83
ec4cebf
 
 
c68ae83
 
 
 
 
 
 
 
ec4cebf
 
 
 
 
c68ae83
 
 
ec4cebf
 
 
c68ae83
ec4cebf
 
 
 
c68ae83
05707ed
ec4cebf
 
 
 
 
c68ae83
ec4cebf
 
c68ae83
 
5b5b696
 
 
c68ae83
5b5b696
 
a816f3f
5b5b696
a816f3f
 
 
 
 
5b5b696
ec4cebf
 
 
c68ae83
ec4cebf
c68ae83
 
 
 
ec4cebf
c68ae83
 
 
 
 
 
 
ec4cebf
c68ae83
 
a816f3f
c68ae83
a816f3f
c68ae83
 
 
 
ec4cebf
c68ae83
ec4cebf
c68ae83
ec4cebf
 
 
 
c68ae83
a816f3f
c68ae83
a816f3f
c68ae83
ec4cebf
 
c68ae83
a816f3f
c68ae83
a816f3f
c68ae83
ec4cebf
 
 
 
a816f3f
ec4cebf
a816f3f
 
ec4cebf
 
c68ae83
 
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
c68ae83
ec4cebf
 
c68ae83
ec4cebf
 
 
 
 
 
 
 
8575388
ec4cebf
 
c68ae83
 
ec4cebf
 
c68ae83
a816f3f
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
c68ae83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f364b5
 
c68ae83
ee3d852
05707ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps
import threading
import os

# GPU ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ์„ค์ •
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256'  # ๋” ์ž‘์€ ์ฒญํฌ ์‚ฌ์šฉ

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# ์„ค์ • ๊ด€๋ฆฌ
@dataclass
class VideoGenerationConfig:
    model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
    lora_repo_id: str = "Kijai/WanVideo_comfy"
    lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
    mod_value: int = 32
    # Zero GPU๋ฅผ ์œ„ํ•œ ๋งค์šฐ ๋ณด์ˆ˜์ ์ธ ๊ธฐ๋ณธ๊ฐ’
    default_height: int = 320
    default_width: int = 320
    max_area: float = 320.0 * 320.0  # Zero GPU์— ์ตœ์ ํ™”
    slider_min_h: int = 128
    slider_max_h: int = 512  # ๋” ๋‚ฎ์€ ์ตœ๋Œ€๊ฐ’
    slider_min_w: int = 128
    slider_max_w: int = 512  # ๋” ๋‚ฎ์€ ์ตœ๋Œ€๊ฐ’
    fixed_fps: int = 24
    min_frames: int = 8
    max_frames: int = 30  # ๋” ๋‚ฎ์€ ์ตœ๋Œ€ ํ”„๋ ˆ์ž„ (1.25์ดˆ)
    default_prompt: str = "make this image move, smooth motion"
    default_negative_prompt: str = "static, blur"
    # GPU ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™” ์„ค์ •
    enable_model_cpu_offload: bool = True
    enable_vae_slicing: bool = True
    enable_vae_tiling: bool = True
    
    @property
    def max_duration(self):
        """์ตœ๋Œ€ ํ—ˆ์šฉ duration (์ดˆ)"""
        return self.max_frames / self.fixed_fps
    
    @property
    def min_duration(self):
        """์ตœ์†Œ ํ—ˆ์šฉ duration (์ดˆ)"""
        return self.min_frames / self.fixed_fps

config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max

# ๊ธ€๋กœ๋ฒŒ ๋ณ€์ˆ˜
pipe = None
generation_lock = threading.Lock()

# ์„ฑ๋Šฅ ์ธก์ • ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ
def measure_time(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
        return result
    return wrapper

# GPU ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ํ•จ์ˆ˜
def clear_gpu_memory():
    """๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ (Zero GPU ์•ˆ์ „)"""
    gc.collect()
    if torch.cuda.is_available():
        try:
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        except:
            pass

# ๋น„๋””์˜ค ์ƒ์„ฑ๊ธฐ ํด๋ž˜์Šค
class VideoGenerator:
    def __init__(self, config: VideoGenerationConfig):
        self.config = config
    
    def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
        orig_w, orig_h = image.size
        if orig_w <= 0 or orig_h <= 0:
            return self.config.default_height, self.config.default_width
        
        aspect_ratio = orig_h / orig_w
        
        # Zero GPU์— ์ตœ์ ํ™”๋œ ๋งค์šฐ ์ž‘์€ ํ•ด์ƒ๋„
        max_area = 320.0 * 320.0  # 102,400 ํ”ฝ์…€
        
        # ์ข…ํšก๋น„๊ฐ€ ๋„ˆ๋ฌด ๊ทน๋‹จ์ ์ธ ๊ฒฝ์šฐ ์กฐ์ •
        if aspect_ratio > 2.0:
            aspect_ratio = 2.0
        elif aspect_ratio < 0.5:
            aspect_ratio = 0.5
        
        calc_h = round(np.sqrt(max_area * aspect_ratio))
        calc_w = round(np.sqrt(max_area / aspect_ratio))
        
        # mod_value์— ๋งž์ถค
        calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
        calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
        
        # ์ตœ๋Œ€ 512๋กœ ์ œํ•œ
        new_h = int(np.clip(calc_h, self.config.slider_min_h, 512))
        new_w = int(np.clip(calc_w, self.config.slider_min_w, 512))
        
        # mod_value์— ๋งž์ถค
        new_h = (new_h // self.config.mod_value) * self.config.mod_value
        new_w = (new_w // self.config.mod_value) * self.config.mod_value
        
        # ์ตœ์ข… ํ”ฝ์…€ ์ˆ˜ ํ™•์ธ
        if new_h * new_w > 102400:  # 320x320
            # ๋น„์œจ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์ถ•์†Œ
            scale = np.sqrt(102400 / (new_h * new_w))
            new_h = int((new_h * scale) // self.config.mod_value) * self.config.mod_value
            new_w = int((new_w * scale) // self.config.mod_value) * self.config.mod_value
        
        return new_h, new_w
    
    def validate_inputs(self, image: Image.Image, prompt: str, height: int, 
                       width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
        if image is None:
            return False, "๐Ÿ–ผ๏ธ Please upload an input image"
        
        if not prompt or len(prompt.strip()) == 0:
            return False, "โœ๏ธ Please provide a prompt"
        
        if len(prompt) > 200:  # ๋” ์งง์€ ํ”„๋กฌํ”„ํŠธ ์ œํ•œ
            return False, "โš ๏ธ Prompt is too long (max 200 characters)"
        
        # Zero GPU์— ์ตœ์ ํ™”๋œ ์ œํ•œ
        if duration < 0.3:
            return False, "โฑ๏ธ Duration too short (min 0.3s)"
        
        if duration > 1.2:  # ๋” ์งง์€ ์ตœ๋Œ€ duration
            return False, "โฑ๏ธ Duration too long (max 1.2s for stability)"
        
        # ํ”ฝ์…€ ์ˆ˜ ์ œํ•œ (๋” ๋ณด์ˆ˜์ ์œผ๋กœ)
        max_pixels = 320 * 320  # 102,400 ํ”ฝ์…€
        if height * width > max_pixels:
            return False, f"๐Ÿ“ Total pixels limited to {max_pixels:,} (e.g., 320ร—320, 256ร—384)"
        
        if height > 512 or width > 512:  # ๋” ๋‚ฎ์€ ์ตœ๋Œ€๊ฐ’
            return False, "๐Ÿ“ Maximum dimension is 512 pixels"
        
        # ์ข…ํšก๋น„ ์ฒดํฌ
        aspect_ratio = max(height/width, width/height)
        if aspect_ratio > 2.0:
            return False, "๐Ÿ“ Aspect ratio too extreme (max 2:1 or 1:2)"
        
        if steps > 5:  # ๋” ๋‚ฎ์€ ์ตœ๋Œ€ ์Šคํ…
            return False, "๐Ÿ”ง Maximum 5 steps in Zero GPU environment"
        
        return True, None
    
    def generate_unique_filename(self, seed: int) -> str:
        timestamp = int(time.time())
        unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
        hash_obj = hashlib.md5(unique_str.encode())
        return f"video_{hash_obj.hexdigest()[:8]}.mp4"

video_generator = VideoGenerator(config)

# Gradio ํ•จ์ˆ˜๋“ค
def handle_image_upload(image):
    if image is None:
        return gr.update(value=config.default_height), gr.update(value=config.default_width)
    
    try:
        if not isinstance(image, Image.Image):
            raise ValueError("Invalid image format")
        
        new_h, new_w = video_generator.calculate_dimensions(image)
        return gr.update(value=new_h), gr.update(value=new_w)
        
    except Exception as e:
        logger.error(f"Error processing image: {e}")
        gr.Warning("โš ๏ธ Error processing image")
        return gr.update(value=config.default_height), gr.update(value=config.default_width)

def get_duration(input_image, prompt, height, width, negative_prompt, 
                duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
    # Zero GPU ํ™˜๊ฒฝ์—์„œ ๋งค์šฐ ๋ณด์ˆ˜์ ์ธ ์‹œ๊ฐ„ ํ• ๋‹น
    base_duration = 50  # ๊ธฐ๋ณธ 50์ดˆ๋กœ ์ฆ๊ฐ€
    
    # ํ”ฝ์…€ ์ˆ˜์— ๋”ฐ๋ฅธ ์ถ”๊ฐ€ ์‹œ๊ฐ„
    pixels = height * width
    if pixels > 147456:  # 384x384 ์ด์ƒ
        base_duration += 20
    elif pixels > 100000:  # ~316x316 ์ด์ƒ
        base_duration += 10
    
    # ์Šคํ… ์ˆ˜์— ๋”ฐ๋ฅธ ์ถ”๊ฐ€ ์‹œ๊ฐ„
    if steps > 4:
        base_duration += 15
    elif steps > 2:
        base_duration += 10
    
    # ์ข…ํšก๋น„๊ฐ€ ๊ทน๋‹จ์ ์ธ ๊ฒฝ์šฐ ์ถ”๊ฐ€ ์‹œ๊ฐ„
    aspect_ratio = max(height/width, width/height)
    if aspect_ratio > 1.5:  # 3:2 ์ด์ƒ์˜ ๋น„์œจ
        base_duration += 10
    
    # ์ตœ๋Œ€ 90์ดˆ๋กœ ์ œํ•œ
    return min(base_duration, 90)

@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width, 
                   negative_prompt=config.default_negative_prompt, 
                   duration_seconds=0.8, guidance_scale=1, steps=3,
                   seed=42, randomize_seed=False, 
                   progress=gr.Progress(track_tqdm=True)):
    
    global pipe
    
    # ๋™์‹œ ์‹คํ–‰ ๋ฐฉ์ง€
    if not generation_lock.acquire(blocking=False):
        raise gr.Error("โณ Another video is being generated. Please wait...")
    
    try:
        progress(0.05, desc="๐Ÿ” Validating inputs...")
        logger.info(f"Starting generation - Resolution: {height}x{width}, Duration: {duration_seconds}s, Steps: {steps}")
        
        # ์ž…๋ ฅ ๊ฒ€์ฆ
        is_valid, error_msg = video_generator.validate_inputs(
            input_image, prompt, height, width, duration_seconds, steps
        )
        if not is_valid:
            logger.warning(f"Validation failed: {error_msg}")
            raise gr.Error(error_msg)
        
        # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        clear_gpu_memory()
        
        progress(0.1, desc="๐Ÿš€ Loading model...")
        
        # ๋ชจ๋ธ ๋กœ๋”ฉ (GPU ํ•จ์ˆ˜ ๋‚ด์—์„œ)
        if pipe is None:
            try:
                logger.info("Loading model components...")
                
                # ์ปดํฌ๋„ŒํŠธ ๋กœ๋“œ
                image_encoder = CLIPVisionModel.from_pretrained(
                    config.model_id, 
                    subfolder="image_encoder", 
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True
                )
                
                vae = AutoencoderKLWan.from_pretrained(
                    config.model_id, 
                    subfolder="vae", 
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True
                )
                
                pipe = WanImageToVideoPipeline.from_pretrained(
                    config.model_id, 
                    vae=vae, 
                    image_encoder=image_encoder, 
                    torch_dtype=torch.bfloat16,
                    low_cpu_mem_usage=True,
                    use_safetensors=True
                )
                
                # ์Šค์ผ€์ค„๋Ÿฌ ์„ค์ •
                pipe.scheduler = UniPCMultistepScheduler.from_config(
                    pipe.scheduler.config, flow_shift=8.0
                )
                
                # LoRA ๋กœ๋“œ ๊ฑด๋„ˆ๋›ฐ๊ธฐ (์•ˆ์ •์„ฑ์„ ์œ„ํ•ด)
                logger.info("Skipping LoRA for stability")
                
                # GPU๋กœ ์ด๋™
                pipe.to("cuda")
                
                # ์ตœ์ ํ™” ํ™œ์„ฑํ™”
                pipe.enable_vae_slicing()
                pipe.enable_vae_tiling()
                
                # ๋ชจ๋ธ CPU ์˜คํ”„๋กœ๋“œ ํ™œ์„ฑํ™” (๋ฉ”๋ชจ๋ฆฌ ์ ˆ์•ฝ)
                pipe.enable_model_cpu_offload()
                
                logger.info("Model loaded successfully")
                
            except Exception as e:
                logger.error(f"Model loading failed: {e}")
                raise gr.Error("Failed to load model")
        
        progress(0.3, desc="๐ŸŽฏ Preparing image...")
        
        # ์ด๋ฏธ์ง€ ์ค€๋น„
        target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
        target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
        
        # ํ”„๋ ˆ์ž„ ์ˆ˜ ๊ณ„์‚ฐ (๋งค์šฐ ๋ณด์ˆ˜์ )
        num_frames = min(
            int(round(duration_seconds * config.fixed_fps)),
            24  # ์ตœ๋Œ€ 24ํ”„๋ ˆ์ž„ (1์ดˆ)
        )
        num_frames = max(8, num_frames)  # ์ตœ์†Œ 8ํ”„๋ ˆ์ž„
        
        logger.info(f"Generating {num_frames} frames at {target_h}x{target_w}")
        
        current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
        
        # ์ด๋ฏธ์ง€ ๋ฆฌ์‚ฌ์ด์ฆˆ
        resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
        
        progress(0.4, desc="๐ŸŽฌ Generating video...")
        
        # ๋น„๋””์˜ค ์ƒ์„ฑ
        with torch.inference_mode(), torch.amp.autocast('cuda', enabled=True, dtype=torch.float16):
            try:
                # ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ ์œ„ํ•œ ์„ค์ •
                torch.cuda.empty_cache()
                
                # ์ƒ์„ฑ ํŒŒ๋ผ๋ฏธํ„ฐ ์ตœ์ ํ™”
                output_frames_list = pipe(
                    image=resized_image,
                    prompt=prompt[:150],  # ํ”„๋กฌํ”„ํŠธ ๊ธธ์ด ์ œํ•œ
                    negative_prompt=negative_prompt[:50] if negative_prompt else "",
                    height=target_h,
                    width=target_w,
                    num_frames=num_frames,
                    guidance_scale=float(guidance_scale),
                    num_inference_steps=int(steps),
                    generator=torch.Generator(device="cuda").manual_seed(current_seed),
                    return_dict=True,
                    # ์ถ”๊ฐ€ ์ตœ์ ํ™” ํŒŒ๋ผ๋ฏธํ„ฐ
                    output_type="pil"
                ).frames[0]
                
                logger.info("Video generation completed successfully")
                
            except torch.cuda.OutOfMemoryError:
                logger.error("GPU OOM error")
                clear_gpu_memory()
                raise gr.Error("๐Ÿ’พ GPU out of memory. Try smaller dimensions (256x256 recommended).")
            except RuntimeError as e:
                if "out of memory" in str(e).lower():
                    logger.error("Runtime OOM error")
                    clear_gpu_memory()
                    raise gr.Error("๐Ÿ’พ GPU memory error. Please try again with smaller settings.")
                else:
                    logger.error(f"Runtime error: {e}")
                    raise gr.Error(f"โŒ Generation failed: {str(e)[:50]}")
            except Exception as e:
                logger.error(f"Generation error: {type(e).__name__}: {e}")
                raise gr.Error(f"โŒ Generation failed. Try reducing resolution or steps.")
        
        progress(0.9, desc="๐Ÿ’พ Saving video...")
        
        # ๋น„๋””์˜ค ์ €์žฅ
        try:
            filename = video_generator.generate_unique_filename(current_seed)
            with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
                video_path = tmpfile.name
            
            export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
            logger.info(f"Video saved: {video_path}")
        except Exception as e:
            logger.error(f"Save error: {e}")
            raise gr.Error("Failed to save video")
        
        progress(1.0, desc="โœจ Complete!")
        logger.info(f"Video generated: {num_frames} frames, {target_h}x{target_w}")
        
        # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        del output_frames_list
        del resized_image
        torch.cuda.empty_cache()
        gc.collect()
        
        return video_path, current_seed
        
    except gr.Error:
        raise
    except Exception as e:
        logger.error(f"Unexpected error: {type(e).__name__}: {e}")
        raise gr.Error(f"โŒ Unexpected error. Please try again with smaller settings.")
        
    finally:
        generation_lock.release()
        clear_gpu_memory()

# CSS
css = """
.container {
    max-width: 1000px;
    margin: auto;
    padding: 20px;
}

.header {
    text-align: center;
    margin-bottom: 20px;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 30px;
    border-radius: 15px;
    color: white;
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}

.header h1 {
    font-size: 2.5em;
    margin-bottom: 10px;
}

.warning-box {
    background: #fff3cd;
    border: 1px solid #ffeaa7;
    border-radius: 8px;
    padding: 12px;
    margin: 10px 0;
    color: #856404;
    font-size: 0.9em;
}

.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    font-size: 1.2em;
    padding: 12px 30px;
    border-radius: 25px;
    border: none;
    cursor: pointer;
    width: 100%;
    margin-top: 15px;
}

.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
}
"""

# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes="container"):
        # Header
        gr.HTML("""
        <div class="header">
            <h1>๐ŸŽฌ AI Video Generator</h1>
            <p>Transform images into videos with Wan 2.1 (Zero GPU Optimized)</p>
        </div>
        """)
        
        # ๊ฒฝ๊ณ 
        gr.HTML("""
        <div class="warning-box">
            <strong>โšก Zero GPU Strict Limitations:</strong>
            <ul style="margin: 5px 0; padding-left: 20px;">
                <li>Max resolution: 320ร—320 (recommended 256ร—256)</li>
                <li>Max duration: 1.2 seconds</li>
                <li>Max steps: 5 (2-3 recommended)</li>
                <li>Processing time: ~50-80 seconds</li>
                <li>Please wait for completion before next generation</li>
            </ul>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(
                    type="pil", 
                    label="๐Ÿ–ผ๏ธ Upload Image"
                )
                
                prompt_input = gr.Textbox(
                    label="โœจ Animation Prompt",
                    value=config.default_prompt,
                    placeholder="Describe the motion...",
                    lines=2,
                    max_lines=3
                )
                
                duration_input = gr.Slider(
                    minimum=0.3,
                    maximum=1.2,
                    step=0.1,
                    value=0.8,
                    label="โฑ๏ธ Duration (seconds)"
                )
                
                with gr.Accordion("โš™๏ธ Settings", open=False):
                    negative_prompt = gr.Textbox(
                        label="Negative Prompt",
                        value=config.default_negative_prompt,
                        lines=1
                    )
                    
                    with gr.Row():
                        height_slider = gr.Slider(
                            minimum=128,
                            maximum=512,
                            step=32,
                            value=256,
                            label="Height"
                        )
                        width_slider = gr.Slider(
                            minimum=128,
                            maximum=512,
                            step=32,
                            value=256,
                            label="Width"
                        )
                    
                    steps_slider = gr.Slider(
                        minimum=1,
                        maximum=5,
                        step=1,
                        value=2,
                        label="Steps (2-3 recommended)"
                    )
                    
                    with gr.Row():
                        seed = gr.Slider(
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=42,
                            label="Seed"
                        )
                        randomize_seed = gr.Checkbox(
                            label="Random",
                            value=True
                        )
                    
                    guidance_scale = gr.Slider(
                        minimum=0.0,
                        maximum=5.0,
                        step=0.5,
                        value=1.0,
                        label="Guidance Scale",
                        visible=False
                    )
                
                generate_btn = gr.Button(
                    "๐ŸŽฌ Generate Video",
                    variant="primary",
                    elem_classes="generate-btn"
                )
            
            with gr.Column(scale=1):
                video_output = gr.Video(
                    label="Generated Video",
                    autoplay=True
                )
                
                gr.Markdown("""
                ### ๐Ÿ’ก Tips for Zero GPU:
                - **Best**: 256ร—256 resolution
                - **Safe**: 2-3 steps only
                - **Duration**: 0.8s is optimal
                - **Prompts**: Keep short and simple
                - **Important**: Wait for completion!
                
                ### โš ๏ธ If GPU stops:
                - Reduce resolution to 256ร—256
                - Use only 2 steps
                - Keep duration under 1 second
                - Avoid extreme aspect ratios
                """)
        
        # Event handlers
        input_image.upload(
            fn=handle_image_upload,
            inputs=[input_image],
            outputs=[height_slider, width_slider]
        )
        
        generate_btn.click(
            fn=generate_video,
            inputs=[
                input_image, prompt_input, height_slider, width_slider,
                negative_prompt, duration_input, guidance_scale, 
                steps_slider, seed, randomize_seed
            ],
            outputs=[video_output, seed]
        )

if __name__ == "__main__":
    logger.info("Starting app in Zero GPU environment")
    demo.queue(max_size=2)  # ์ž‘์€ ํ ์‚ฌ์ด์ฆˆ
    demo.launch()