LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
a9e9029 verified
# app.py
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib
import matplotlib.pyplot as plt
import time
from datetime import datetime, timedelta
import numpy as np
from collections import OrderedDict, defaultdict # Added defaultdict
import asyncio
# --- Module Imports ---
from utils.gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP # Keep this if used by AnalyticsTab
)
from services.state_manager import process_and_store_bubble_token
from services.sync_logic import sync_all_linkedin_data_orchestrator
from ui.ui_generators import (
display_main_dashboard,
build_analytics_tab_plot_area, # This will be passed to AnalyticsTab
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # These will be passed
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot # Pass these
from formulas import PLOT_FORMULAS # Keep this if used by AnalyticsTab
# --- EXISTING CHATBOT MODULE IMPORTS ---
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions # Pass this
from features.chatbot.chatbot_handler import generate_llm_response # Pass this
# --- NEW AGENTIC PIPELINE IMPORTS ---
try:
from run_agentic_pipeline import run_agentic_pipeline_autonomously
from ui.insights_ui_generator import (
format_single_okr_for_display
)
AGENTIC_MODULES_LOADED = True
except:
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 will be disabled.")
AGENTIC_MODULES_LOADED = False
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." # Placeholder
# --- IMPORT THE NEW ANALYTICS TAB MODULE ---
from services.analytics_tab_module import AnalyticsTab # Assuming analytics_tab_module.py is in the services directory
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# API Key Setup
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for existing analytics tab chatbot - these are passed to AnalyticsTab
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({}) # This will be populated by the analytics module's refresh
# --- STATES FOR AGENTIC PIPELINE ---
orchestration_raw_results_st = gr.State(None) # Stores the full raw output from the agentic pipeline
key_results_for_selection_st = gr.State([]) # Stores the list of dicts for KR selection (label, id, etc.)
selected_key_result_ids_st = gr.State([]) # Stores the unique_kr_ids selected in the CheckboxGroup
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
# --- Instantiate the AnalyticsTab module ---
analytics_icons = {
'bomb': BOMB_ICON, 'explore': EXPLORE_ICON,
'formula': FORMULA_ICON, 'active': ACTIVE_ICON
}
analytics_tab_instance = AnalyticsTab(
token_state=token_state,
chat_histories_st=chat_histories_st,
current_chat_plot_id_st=current_chat_plot_id_st,
plot_data_for_chatbot_st=plot_data_for_chatbot_st,
plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP,
plot_formulas_data=PLOT_FORMULAS,
icons=analytics_icons,
fn_build_plot_area=build_analytics_tab_plot_area,
fn_update_plot_figures=update_analytics_plots_figures,
fn_create_placeholder_plot=create_placeholder_plot,
fn_get_initial_insight=get_initial_insight_prompt_and_suggestions,
fn_generate_llm_response=generate_llm_response
)
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
# --- Use the AnalyticsTab module to create Tab 2 ---
analytics_tab_instance.create_tab_ui()
# --- Tab 3: Agentic Analysis Report ---
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
# --- Tab 4: Agentic OKRs & Tasks ---
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Suggested Key Results (da analisi 'Sempre')")
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
with gr.Column(scale=3):
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.")
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.")
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
return gr.update(value="Nessun OKR trovato nei risultati della pipeline.")
okrs_list = actionable_okrs_dict["okrs"]
# Ensure all_krs_for_selection is a list of dicts with expected keys
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list) or \
not all(isinstance(kr, dict) and 'unique_kr_id' in kr and 'okr_index' in kr and 'kr_index' in kr for kr in all_krs_for_selection):
logging.error("all_krs_for_selection is not in the expected format.")
return gr.update(value="Errore interno: formato dati KR non valido.")
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
selected_krs_by_okr_idx = defaultdict(list)
if selected_kr_unique_ids:
for kr_unique_id in selected_kr_unique_ids:
if kr_unique_id in kr_id_to_indices:
okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
output_md_parts = []
if not okrs_list:
output_md_parts.append("Nessun OKR generato.")
else:
for okr_idx, okr_data in enumerate(okrs_list):
accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx)
# If specific KRs are selected, only show OKRs that have at least one of the selected KRs
# OR if no KRs are selected at all, show all OKRs.
if selected_kr_unique_ids: # User has made a selection
if accepted_indices_for_this_okr is not None: # This OKR has some of the selected KRs
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
else: # No KRs selected, show all OKRs with all their KRs
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
if not output_md_parts and selected_kr_unique_ids:
final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
elif not output_md_parts and not selected_kr_unique_ids: # Should be covered by "Nessun OKR generato."
final_md = "Nessun OKR generato."
else:
final_md = "\n\n---\n\n".join(output_md_parts)
return gr.update(value=final_md)
if AGENTIC_MODULES_LOADED:
key_results_cbg.change(
fn=update_okr_display_on_selection,
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
outputs=[okr_detail_display_md],
api_name="update_okr_display_on_selection_module"
)
# Define the output list for the agentic pipeline callbacks
# Order: Report MD, KR CBG, OKR Detail MD, RawResults State, SelectedKRIDs State, KRList State, Status MD
agentic_pipeline_outputs_list = [
agentic_report_display_md,
key_results_cbg,
okr_detail_display_md,
orchestration_raw_results_st,
selected_key_result_ids_st,
key_results_for_selection_st,
agentic_pipeline_status_md
]
agentic_pipeline_inputs = [token_state] # Input for the autonomous run
# --- Event Handling ---
initial_load_event = org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
initial_load_event.then(
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
inputs=[
token_state,
analytics_tab_instance.date_filter_selector,
analytics_tab_instance.custom_start_date_picker,
analytics_tab_instance.custom_end_date_picker,
chat_histories_st
],
outputs=analytics_tab_instance.graph_refresh_outputs_list,
show_progress="full"
).then(
fn=run_agentic_pipeline_autonomously, # Generator function
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
outputs=agentic_pipeline_outputs_list,
show_progress="minimal" # Use minimal for generators that yield status
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
)
sync_event_part2.then(
fn=run_agentic_pipeline_autonomously, # Generator function
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
outputs=agentic_pipeline_outputs_list,
show_progress="minimal"
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
sync_event_graphs_after_sync = sync_event_part3.then(
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
inputs=[
token_state,
analytics_tab_instance.date_filter_selector,
analytics_tab_instance.custom_start_date_picker,
analytics_tab_instance.custom_end_date_picker,
chat_histories_st
],
outputs=analytics_tab_instance.graph_refresh_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Una o più variabili d'ambiente Bubble (BUBBLE_APP_NAME, BUBBLE_API_KEY_PRIVATE, BUBBLE_API_ENDPOINT) non sono impostate.")
if not AGENTIC_MODULES_LOADED:
logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (Agentic Report & OKRs) will be non-functional.")
if not os.environ.get("GEMINI_API_KEY"): # Check GEMINI_API_KEY directly as GOOGLE_API_KEY is derived
logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. Questo è necessario per le funzionalità AI, incluse le tab agentiche e il chatbot dei grafici.")
try:
logging.info(f"Gradio version: {gr.__version__}")
logging.info(f"Pandas version: {pd.__version__}")
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except Exception as e:
logging.warning(f"Could not log library versions: {e}")
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)