# app.py import gradio as gr import pandas as pd import os import logging import matplotlib matplotlib.use('Agg') # Set backend for Matplotlib import matplotlib.pyplot as plt import time from datetime import datetime, timedelta import numpy as np from collections import OrderedDict, defaultdict # Added defaultdict import asyncio # --- Module Imports --- from utils.gradio_utils import get_url_user_token # Functions from newly created/refactored modules from config import ( LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR, PLOT_ID_TO_FORMULA_KEY_MAP # Keep this if used by AnalyticsTab ) from services.state_manager import process_and_store_bubble_token from services.sync_logic import sync_all_linkedin_data_orchestrator from ui.ui_generators import ( display_main_dashboard, build_analytics_tab_plot_area, # This will be passed to AnalyticsTab BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # These will be passed ) from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot # Pass these from formulas import PLOT_FORMULAS # Keep this if used by AnalyticsTab # --- EXISTING CHATBOT MODULE IMPORTS --- from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions # Pass this from features.chatbot.chatbot_handler import generate_llm_response # Pass this # --- NEW AGENTIC PIPELINE IMPORTS --- try: from run_agentic_pipeline import run_agentic_pipeline_autonomously from ui.insights_ui_generator import ( format_single_okr_for_display ) AGENTIC_MODULES_LOADED = True except: logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 will be disabled.") AGENTIC_MODULES_LOADED = False def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." # Placeholder # --- IMPORT THE NEW ANALYTICS TAB MODULE --- from services.analytics_tab_module import AnalyticsTab # Assuming analytics_tab_module.py is in the services directory # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') # API Key Setup os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False" user_provided_api_key = os.environ.get("GEMINI_API_KEY") if user_provided_api_key: os.environ["GOOGLE_API_KEY"] = user_provided_api_key logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.") else: logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.") with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Organization Dashboard") as app: token_state = gr.State(value={ "token": None, "client_id": None, "org_urn": None, "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), "fetch_count_for_api": 0, "url_user_token_temp_storage": None, "config_date_col_posts": "published_at", "config_date_col_mentions": "date", "config_date_col_followers": "date", "config_media_type_col": "media_type", "config_eb_labels_col": "li_eb_label" }) # States for existing analytics tab chatbot - these are passed to AnalyticsTab chat_histories_st = gr.State({}) current_chat_plot_id_st = gr.State(None) plot_data_for_chatbot_st = gr.State({}) # This will be populated by the analytics module's refresh # --- STATES FOR AGENTIC PIPELINE --- orchestration_raw_results_st = gr.State(None) # Stores the full raw output from the agentic pipeline key_results_for_selection_st = gr.State([]) # Stores the list of dicts for KR selection (label, id, etc.) selected_key_result_ids_st = gr.State([]) # Stores the unique_kr_ids selected in the CheckboxGroup gr.Markdown("# 🚀 LinkedIn Organization Dashboard") url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False) status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...") org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False) app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) def initial_load_sequence(url_token, org_urn_val, current_state): status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) dashboard_content = display_main_dashboard(new_state) return status_msg, new_state, btn_update, dashboard_content # --- Instantiate the AnalyticsTab module --- analytics_icons = { 'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON } analytics_tab_instance = AnalyticsTab( token_state=token_state, chat_histories_st=chat_histories_st, current_chat_plot_id_st=current_chat_plot_id_st, plot_data_for_chatbot_st=plot_data_for_chatbot_st, plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP, plot_formulas_data=PLOT_FORMULAS, icons=analytics_icons, fn_build_plot_area=build_analytics_tab_plot_area, fn_update_plot_figures=update_analytics_plots_figures, fn_create_placeholder_plot=create_placeholder_plot, fn_get_initial_insight=get_initial_insight_prompt_and_suggestions, fn_generate_llm_response=generate_llm_response ) with gr.Tabs() as tabs: with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"): gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.") sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False) sync_status_html_output = gr.HTML("
Stato sincronizzazione...
") dashboard_display_html = gr.HTML("Caricamento dashboard...
") # --- Use the AnalyticsTab module to create Tab 2 --- analytics_tab_instance.create_tab_ui() # --- Tab 3: Agentic Analysis Report --- with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)") agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True) gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.") agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.") if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.") # --- Tab 4: Agentic OKRs & Tasks --- with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')") gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.") if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Suggested Key Results (da analisi 'Sempre')") key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True) with gr.Column(scale=3): gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results") okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.") def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list): if not raw_orchestration_results or not AGENTIC_MODULES_LOADED: return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.") actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks") if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list): return gr.update(value="Nessun OKR trovato nei risultati della pipeline.") okrs_list = actionable_okrs_dict["okrs"] # Ensure all_krs_for_selection is a list of dicts with expected keys if not all_krs_for_selection or not isinstance(all_krs_for_selection, list) or \ not all(isinstance(kr, dict) and 'unique_kr_id' in kr and 'okr_index' in kr and 'kr_index' in kr for kr in all_krs_for_selection): logging.error("all_krs_for_selection is not in the expected format.") return gr.update(value="Errore interno: formato dati KR non valido.") kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection} selected_krs_by_okr_idx = defaultdict(list) if selected_kr_unique_ids: for kr_unique_id in selected_kr_unique_ids: if kr_unique_id in kr_id_to_indices: okr_idx, kr_idx = kr_id_to_indices[kr_unique_id] selected_krs_by_okr_idx[okr_idx].append(kr_idx) output_md_parts = [] if not okrs_list: output_md_parts.append("Nessun OKR generato.") else: for okr_idx, okr_data in enumerate(okrs_list): accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx) # If specific KRs are selected, only show OKRs that have at least one of the selected KRs # OR if no KRs are selected at all, show all OKRs. if selected_kr_unique_ids: # User has made a selection if accepted_indices_for_this_okr is not None: # This OKR has some of the selected KRs output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx)) else: # No KRs selected, show all OKRs with all their KRs output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx)) if not output_md_parts and selected_kr_unique_ids: final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati." elif not output_md_parts and not selected_kr_unique_ids: # Should be covered by "Nessun OKR generato." final_md = "Nessun OKR generato." else: final_md = "\n\n---\n\n".join(output_md_parts) return gr.update(value=final_md) if AGENTIC_MODULES_LOADED: key_results_cbg.change( fn=update_okr_display_on_selection, inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], outputs=[okr_detail_display_md], api_name="update_okr_display_on_selection_module" ) # Define the output list for the agentic pipeline callbacks # Order: Report MD, KR CBG, OKR Detail MD, RawResults State, SelectedKRIDs State, KRList State, Status MD agentic_pipeline_outputs_list = [ agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md ] agentic_pipeline_inputs = [token_state] # Input for the autonomous run # --- Event Handling --- initial_load_event = org_urn_display.change( fn=initial_load_sequence, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], show_progress="full" ) initial_load_event.then( fn=analytics_tab_instance._refresh_analytics_graphs_ui, inputs=[ token_state, analytics_tab_instance.date_filter_selector, analytics_tab_instance.custom_start_date_picker, analytics_tab_instance.custom_end_date_picker, chat_histories_st ], outputs=analytics_tab_instance.graph_refresh_outputs_list, show_progress="full" ).then( fn=run_agentic_pipeline_autonomously, # Generator function inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st], outputs=agentic_pipeline_outputs_list, show_progress="minimal" # Use minimal for generators that yield status ) sync_event_part1 = sync_data_btn.click( fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" ) sync_event_part2 = sync_event_part1.then( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False ) sync_event_part2.then( fn=run_agentic_pipeline_autonomously, # Generator function inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st], outputs=agentic_pipeline_outputs_list, show_progress="minimal" ) sync_event_part3 = sync_event_part2.then( fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False ) sync_event_graphs_after_sync = sync_event_part3.then( fn=analytics_tab_instance._refresh_analytics_graphs_ui, inputs=[ token_state, analytics_tab_instance.date_filter_selector, analytics_tab_instance.custom_start_date_picker, analytics_tab_instance.custom_end_date_picker, chat_histories_st ], outputs=analytics_tab_instance.graph_refresh_outputs_list, show_progress="full" ) if __name__ == "__main__": if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.") if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]): logging.warning("ATTENZIONE: Una o più variabili d'ambiente Bubble (BUBBLE_APP_NAME, BUBBLE_API_KEY_PRIVATE, BUBBLE_API_ENDPOINT) non sono impostate.") if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (Agentic Report & OKRs) will be non-functional.") if not os.environ.get("GEMINI_API_KEY"): # Check GEMINI_API_KEY directly as GOOGLE_API_KEY is derived logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. Questo è necessario per le funzionalità AI, incluse le tab agentiche e il chatbot dei grafici.") try: logging.info(f"Gradio version: {gr.__version__}") logging.info(f"Pandas version: {pd.__version__}") logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}") except Exception as e: logging.warning(f"Could not log library versions: {e}") app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)