LinkedinMonitor / ui /analytics_plot_generator.py
GuglielmoTor's picture
Update ui/analytics_plot_generator.py
eaa683c verified
raw
history blame
33 kB
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import matplotlib.patches as patches # Added for rounded corners
import ast # For safely evaluating string representations of lists
from data_processing.analytics_data_processing import (
generate_chatbot_data_summaries,
prepare_filtered_analytics_data
)
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def _apply_theme_aware_styling(fig, ax):
"""
Helper to apply theme-aware styling to a Matplotlib plot.
It reads colors from rcParams, which Gradio should set based on the current theme.
This makes text, backgrounds, and grids adapt to light/dark mode.
"""
# Get theme-aware colors from Matplotlib's runtime configuration
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
THEME_GRID_COLOR = plt.rcParams.get('grid.color', 'lightgray')
THEME_AXES_FACE_COLOR = plt.rcParams.get('axes.facecolor', 'whitesmoke')
THEME_AXES_EDGE_COLOR = plt.rcParams.get('axes.edgecolor', 'lightgray')
# Make the original figure and axes backgrounds transparent to draw our own.
fig.patch.set_alpha(0.0)
ax.patch.set_alpha(0.0)
# Turn off original spines to draw a new rounded background shape.
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
# Add a new rounded background for the axes area using theme colors.
rounded_rect_bg = patches.FancyBboxPatch(
(0, 0), 1, 1,
boxstyle="round,pad=0,rounding_size=0.015",
transform=ax.transAxes,
facecolor=THEME_AXES_FACE_COLOR,
edgecolor=THEME_AXES_EDGE_COLOR,
linewidth=0.5,
zorder=-1
)
ax.add_patch(rounded_rect_bg)
# Apply the theme's text color to all major text elements.
ax.xaxis.label.set_color(THEME_TEXT_COLOR)
ax.yaxis.label.set_color(THEME_TEXT_COLOR)
ax.title.set_color(THEME_TEXT_COLOR)
# Apply the theme's text color to the tick labels and tick marks.
ax.tick_params(axis='x', colors=THEME_TEXT_COLOR)
ax.tick_params(axis='y', colors=THEME_TEXT_COLOR)
# Set grid color and ensure it's drawn behind data
ax.grid(True, linestyle='--', alpha=0.6, zorder=0, color=THEME_GRID_COLOR)
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a theme-aware placeholder Matplotlib plot."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
_apply_theme_aware_styling(fig, ax)
# Use the theme's text color for the message
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True, zorder=1, color=THEME_TEXT_COLOR)
ax.axis('off')
fig.subplots_adjust(top=0.90, bottom=0.10, left=0.10, right=0.90)
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
fig_err, ax_err = plt.subplots(figsize=(8,4))
fig_err.patch.set_alpha(0.0)
ax_err.patch.set_alpha(0.0)
ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center', zorder=1, color='red')
ax_err.axis('off')
return fig_err
def generate_posts_activity_plot(df, date_column='published_at'):
"""Generates a theme-aware plot for posts activity over time."""
if df is None or df.empty or date_column not in df.columns:
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
posts_over_time = df_copy.set_index(date_column).resample('D').size()
if posts_over_time.empty:
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
def generate_mentions_activity_plot(df, date_column='date'):
"""Generates a theme-aware plot for mentions activity over time."""
if df is None or df.empty or date_column not in df.columns:
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
if mentions_over_time.empty:
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Mentions')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
"""Generates a theme-aware pie chart for mention sentiment distribution."""
if df is None or df.empty or sentiment_column not in df.columns:
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available.")
fig = None
try:
sentiment_counts = df[sentiment_column].value_counts()
if sentiment_counts.empty:
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
_apply_theme_aware_styling(fig, ax)
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
pie_slice_colors = plt.cm.get_cmap('Pastel2', len(sentiment_counts))
wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90,
colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
# Set text colors to be theme-aware
for text_item in texts + autotexts:
text_item.set_color(THEME_TEXT_COLOR)
text_item.set_zorder(2)
for wedge in wedges:
wedge.set_zorder(1)
ax.axis('equal')
fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
def generate_followers_count_over_time_plot(df, **kwargs):
"""Generates a theme-aware plot for followers count over time."""
type_value = kwargs.get('type_value', 'follower_gains_monthly')
title = f"Followers Count Over Time ({type_value})"
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered['category_name'], errors='coerce')
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce').fillna(0)
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce').fillna(0)
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj')
if df_filtered.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(df_filtered['datetime_obj'], df_filtered['follower_count_organic'], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers', zorder=1)
ax.plot(df_filtered['datetime_obj'], df_filtered['follower_count_paid'], marker='x', linestyle='--', color='seagreen', label='Paid Followers', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Follower Count')
legend = ax.legend()
if legend:
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_growth_rate_plot(df, **kwargs):
"""Generates a theme-aware plot for follower growth rate."""
type_value = kwargs.get('type_value', 'follower_gains_monthly')
title = f"Follower Growth Rate ({type_value})"
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered['category_name'], errors='coerce')
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce')
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce')
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')
if len(df_filtered) < 2:
return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")
df_filtered['organic_growth_rate'] = df_filtered['follower_count_organic'].pct_change() * 100
df_filtered['paid_growth_rate'] = df_filtered['follower_count_paid'].pct_change() * 100
df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
plotted = False
if not df_filtered['organic_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate', zorder=1)
plotted = True
if not df_filtered['paid_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate', zorder=1)
plotted = True
if not plotted:
return create_placeholder_plot(title=title, message="No growth rate data to display.")
ax.set_xlabel('Date')
ax.set_ylabel('Growth Rate (%)')
ax.yaxis.set_major_formatter(mticker.PercentFormatter())
legend = ax.legend()
if legend:
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_by_demographics_plot(df, **kwargs):
"""Generates a theme-aware bar plot for followers by demographics."""
plot_title = kwargs.get('plot_title', "Followers by Demographics")
type_value = kwargs.get('type_value')
category_col = 'category_name'
if df is None or df.empty or not type_value:
return create_placeholder_plot(title=plot_title, message="No data or demographic type not specified.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=plot_title, message=f"No data for type '{type_value}'.")
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce').fillna(0)
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce').fillna(0)
demographics_data = df_filtered.groupby(category_col)[['follower_count_organic', 'follower_count_paid']].sum()
demographics_data['total_for_sort'] = demographics_data.sum(axis=1)
demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).head(10).drop(columns=['total_for_sort'])
if demographics_data.empty:
return create_placeholder_plot(title=plot_title, message="No demographic data to display.")
fig, ax = plt.subplots(figsize=(12, 7))
_apply_theme_aware_styling(fig, ax)
demographics_data.plot(kind='bar', ax=ax, zorder=1, width=0.8, color=['dodgerblue', 'seagreen'])
ax.set_xlabel(category_col.replace('_', ' ').title())
ax.set_ylabel('Number of Followers')
legend = ax.legend(['Organic', 'Paid'])
if legend:
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
plt.xticks(rotation=45, ha="right")
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.25, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
def generate_generic_time_series_plot(df, date_column, value_column, title, ylabel, color='blue'):
"""Generic function to create a theme-aware time series plot."""
if df is None or df.empty or date_column not in df.columns or value_column not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[value_column] = pd.to_numeric(df_copy[value_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, value_column]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
data_over_time = df_copy.resample('D')[value_column].sum()
if data_over_time.empty:
return create_placeholder_plot(title=title, message="No data in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color=color, zorder=1)
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel(ylabel)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
"""Generates a theme-aware plot for engagement rate with special y-axis formatting."""
title = "Engagement Rate Over Time"
if df is None or df.empty or date_column not in df.columns or engagement_rate_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col])
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
engagement_over_time = df_copy.set_index(date_column).resample('D')[engagement_rate_col].mean().dropna()
if engagement_over_time.empty:
return create_placeholder_plot(title=title, message="No data to display.")
fig, ax = plt.subplots(figsize=(10,5))
_apply_theme_aware_styling(fig,ax)
ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange', zorder=1)
# Determine the correct formatter based on the data's scale
max_rate = engagement_over_time.max()
formatter_xmax = 1.0 if max_rate <= 1.5 else 100.0
ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Engagement Rate')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_reach_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'clickCount', 'Reach Over Time (Clicks)', 'Total Clicks', color='mediumseagreen')
def generate_impressions_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'impressionCount', 'Impressions Over Time', 'Total Impressions', color='slateblue')
def generate_likes_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'likeCount', 'Reactions (Likes) Over Time', 'Total Likes', color='crimson')
def generate_clicks_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'clickCount', 'Clicks Over Time', 'Total Clicks', color='mediumseagreen')
def generate_shares_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'shareCount', 'Shares Over Time', 'Total Shares', color='teal')
def generate_comments_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'commentCount', 'Comments Over Time', 'Total Comments', color='gold')
def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', **kwargs):
"""Generates a theme-aware pie chart for comment sentiment."""
title = "Breakdown of Comments by Sentiment"
if df is None or df.empty or sentiment_column not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
sentiment_counts = df[sentiment_column].value_counts().dropna()
if sentiment_counts.empty:
return create_placeholder_plot(title=title, message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
_apply_theme_aware_styling(fig, ax)
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
pie_slice_colors = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
for text_item in texts + autotexts:
text_item.set_color(THEME_TEXT_COLOR)
ax.set_title(title)
ax.axis('equal')
fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_post_frequency_plot(df, date_column='published_at', **kwargs):
"""Generates a theme-aware plot for post frequency, using .size() for counting."""
title = "Post Frequency Over Time"
if df is None or df.empty or date_column not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
data_over_time = df_copy.resample('D').size() # Use size() to count posts
if data_over_time.empty:
return create_placeholder_plot(title=title, message="No data in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', zorder=1)
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_content_format_breakdown_plot(df, format_col='media_type', **kwargs):
"""Generates a theme-aware bar chart for content format breakdown."""
title = "Breakdown of Content by Format"
if df is None or df.empty or format_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
format_counts = df[format_col].value_counts().dropna()
if format_counts.empty:
return create_placeholder_plot(title=title, message="No format data.")
fig, ax = plt.subplots(figsize=(8,6))
_apply_theme_aware_styling(fig,ax)
format_counts.plot(kind='bar', ax=ax, zorder=1, color=plt.cm.get_cmap('viridis')(np.linspace(0, 1, len(format_counts))))
ax.set_title(title)
ax.set_xlabel('Media Type')
ax.set_ylabel('Number of Posts')
plt.xticks(rotation=45, ha="right")
# Add text labels with theme color
TEXT_COLOR = plt.rcParams.get('text.color', 'black')
for i, v in enumerate(format_counts):
ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom', zorder=2, color=TEXT_COLOR)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.15, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def _parse_eb_label(label_data):
if isinstance(label_data, list): return label_data
if isinstance(label_data, str):
try:
parsed = ast.literal_eval(label_data)
return parsed if isinstance(parsed, list) else [str(parsed)]
except (ValueError, SyntaxError):
return [label_data.strip()] if label_data.strip() else []
return [] if pd.isna(label_data) else [str(label_data)]
def generate_content_topic_breakdown_plot(df, topics_col='li_eb_labels', **kwargs):
"""Generates a theme-aware horizontal bar chart for content topics."""
title = "Breakdown of Content by Topics (Top 15)"
if df is None or df.empty or topics_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
topic_counts = df[topics_col].apply(_parse_eb_label).explode().dropna().value_counts()
topic_counts = topic_counts[topic_counts.index != '']
if topic_counts.empty:
return create_placeholder_plot(title=title, message="No topic data found.")
top_topics = topic_counts.nlargest(15).sort_values(ascending=True)
fig, ax = plt.subplots(figsize=(10, 8))
_apply_theme_aware_styling(fig,ax)
top_topics.plot(kind='barh', ax=ax, zorder=1, color=plt.cm.get_cmap('YlGnBu')(np.linspace(0.3, 1, len(top_topics))))
ax.set_title(title)
ax.set_xlabel('Number of Posts')
ax.set_ylabel('Topic')
# Add text labels with theme color
TEXT_COLOR = plt.rcParams.get('text.color', 'black')
for i, (topic, count) in enumerate(top_topics.items()):
ax.text(count + (0.01 * top_topics.max()), i, f' {count}', va='center', ha='left', zorder=2, color=TEXT_COLOR)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.1, left=0.3, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
"""
Main function to generate all analytics plots based on provided data and configurations.
Uses a dictionary-based approach for cleaner execution.
"""
logging.info(f"Updating analytics plot figures for theme-aware plotting. Filter: {date_filter_option}")
num_expected_plots = len(current_plot_configs)
plot_data_summaries_for_chatbot = {}
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato") for _ in range(num_expected_plots)]
summaries = {p_cfg["id"]: "Accesso negato, nessun dato per il chatbot." for p_cfg in current_plot_configs}
return [message] + placeholder_figs + [summaries]
try:
(filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df,
raw_follower_stats_df, start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date)
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, filtered_merged_posts_df, filtered_mentions_df,
date_filtered_follower_stats_df, raw_follower_stats_df, token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
summaries = {p_cfg["id"]: f"Errore preparazione dati: {e}" for p_cfg in current_plot_configs}
return [error_msg] + placeholder_figs + [summaries]
# Map plot IDs to their respective generation functions
plot_functions = {
"followers_count": lambda: generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'),
"followers_growth_rate": lambda: generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'),
"followers_by_location": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"),
"followers_by_role": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"),
"followers_by_industry": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"),
"followers_by_seniority": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"),
"engagement_rate": lambda: generate_engagement_rate_over_time_plot(filtered_merged_posts_df),
"reach_over_time": lambda: generate_reach_over_time_plot(filtered_merged_posts_df),
"impressions_over_time": lambda: generate_impressions_over_time_plot(filtered_merged_posts_df),
"likes_over_time": lambda: generate_likes_over_time_plot(filtered_merged_posts_df),
"clicks_over_time": lambda: generate_clicks_over_time_plot(filtered_merged_posts_df),
"shares_over_time": lambda: generate_shares_over_time_plot(filtered_merged_posts_df),
"comments_over_time": lambda: generate_comments_over_time_plot(filtered_merged_posts_df),
"comments_sentiment": lambda: generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df),
"post_frequency_cs": lambda: generate_post_frequency_plot(filtered_merged_posts_df),
"content_format_breakdown_cs": lambda: generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=token_state_value.get("config_media_type_col", "media_type")),
"content_topic_breakdown_cs": lambda: generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=token_state_value.get("config_eb_labels_col", "li_eb_labels")),
"mention_analysis_volume": lambda: generate_mentions_activity_plot(filtered_mentions_df, date_column=token_state_value.get("config_date_col_mentions", "date")),
"mention_analysis_sentiment": lambda: generate_mention_sentiment_plot(filtered_mentions_df)
}
plot_figs = []
for config in current_plot_configs:
plot_id = config["id"]
if plot_id in plot_functions:
try:
fig = plot_functions[plot_id]()
plot_figs.append(fig)
except Exception as e:
logging.error(f"Failed to generate plot for '{plot_id}': {e}", exc_info=True)
plot_figs.append(create_placeholder_plot(title=f"Error: {config.get('label', plot_id)}", message=str(e)))
else:
logging.warning(f"No plot function found for ID: '{plot_id}'")
plot_figs.append(create_placeholder_plot(title=f"Plot Not Implemented: {config.get('label', plot_id)}"))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "N/A"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "N/A"
message += f" (Da: {s_display} A: {e_display})"
return [message] + plot_figs + [plot_data_summaries_for_chatbot]