Spaces:
Running
Running
File size: 33,043 Bytes
f20ee95 8019346 bc9de29 617c2c1 95677de 37c2a7c f20ee95 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 f20ee95 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 8019346 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 7f147c5 f20ee95 8019346 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 f20ee95 7f147c5 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c 08d342a eaa683c 08d342a eaa683c 08d342a eaa683c 08d342a eaa683c bc9de29 b7a0e8c eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 8019346 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 8019346 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 8019346 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 8019346 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 adab1ec eaa683c bc9de29 eaa683c adab1ec eaa683c bc9de29 eaa683c 08d342a eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c 08d342a eaa683c bc9de29 617c2c1 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 617c2c1 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 617c2c1 eaa683c bc9de29 eaa683c bc9de29 eaa683c 617c2c1 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c 617c2c1 eaa683c bc9de29 7f147c5 eaa683c bc9de29 eaa683c bc9de29 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import matplotlib.patches as patches # Added for rounded corners
import ast # For safely evaluating string representations of lists
from data_processing.analytics_data_processing import (
generate_chatbot_data_summaries,
prepare_filtered_analytics_data
)
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def _apply_theme_aware_styling(fig, ax):
"""
Helper to apply theme-aware styling to a Matplotlib plot.
It reads colors from rcParams, which Gradio should set based on the current theme.
This makes text, backgrounds, and grids adapt to light/dark mode.
"""
# Get theme-aware colors from Matplotlib's runtime configuration
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
THEME_GRID_COLOR = plt.rcParams.get('grid.color', 'lightgray')
THEME_AXES_FACE_COLOR = plt.rcParams.get('axes.facecolor', 'whitesmoke')
THEME_AXES_EDGE_COLOR = plt.rcParams.get('axes.edgecolor', 'lightgray')
# Make the original figure and axes backgrounds transparent to draw our own.
fig.patch.set_alpha(0.0)
ax.patch.set_alpha(0.0)
# Turn off original spines to draw a new rounded background shape.
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
# Add a new rounded background for the axes area using theme colors.
rounded_rect_bg = patches.FancyBboxPatch(
(0, 0), 1, 1,
boxstyle="round,pad=0,rounding_size=0.015",
transform=ax.transAxes,
facecolor=THEME_AXES_FACE_COLOR,
edgecolor=THEME_AXES_EDGE_COLOR,
linewidth=0.5,
zorder=-1
)
ax.add_patch(rounded_rect_bg)
# Apply the theme's text color to all major text elements.
ax.xaxis.label.set_color(THEME_TEXT_COLOR)
ax.yaxis.label.set_color(THEME_TEXT_COLOR)
ax.title.set_color(THEME_TEXT_COLOR)
# Apply the theme's text color to the tick labels and tick marks.
ax.tick_params(axis='x', colors=THEME_TEXT_COLOR)
ax.tick_params(axis='y', colors=THEME_TEXT_COLOR)
# Set grid color and ensure it's drawn behind data
ax.grid(True, linestyle='--', alpha=0.6, zorder=0, color=THEME_GRID_COLOR)
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a theme-aware placeholder Matplotlib plot."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
_apply_theme_aware_styling(fig, ax)
# Use the theme's text color for the message
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True, zorder=1, color=THEME_TEXT_COLOR)
ax.axis('off')
fig.subplots_adjust(top=0.90, bottom=0.10, left=0.10, right=0.90)
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
fig_err, ax_err = plt.subplots(figsize=(8,4))
fig_err.patch.set_alpha(0.0)
ax_err.patch.set_alpha(0.0)
ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center', zorder=1, color='red')
ax_err.axis('off')
return fig_err
def generate_posts_activity_plot(df, date_column='published_at'):
"""Generates a theme-aware plot for posts activity over time."""
if df is None or df.empty or date_column not in df.columns:
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
posts_over_time = df_copy.set_index(date_column).resample('D').size()
if posts_over_time.empty:
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
def generate_mentions_activity_plot(df, date_column='date'):
"""Generates a theme-aware plot for mentions activity over time."""
if df is None or df.empty or date_column not in df.columns:
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
if mentions_over_time.empty:
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Mentions')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
"""Generates a theme-aware pie chart for mention sentiment distribution."""
if df is None or df.empty or sentiment_column not in df.columns:
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available.")
fig = None
try:
sentiment_counts = df[sentiment_column].value_counts()
if sentiment_counts.empty:
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
_apply_theme_aware_styling(fig, ax)
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
pie_slice_colors = plt.cm.get_cmap('Pastel2', len(sentiment_counts))
wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90,
colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
# Set text colors to be theme-aware
for text_item in texts + autotexts:
text_item.set_color(THEME_TEXT_COLOR)
text_item.set_zorder(2)
for wedge in wedges:
wedge.set_zorder(1)
ax.axis('equal')
fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
def generate_followers_count_over_time_plot(df, **kwargs):
"""Generates a theme-aware plot for followers count over time."""
type_value = kwargs.get('type_value', 'follower_gains_monthly')
title = f"Followers Count Over Time ({type_value})"
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered['category_name'], errors='coerce')
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce').fillna(0)
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce').fillna(0)
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj')
if df_filtered.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(df_filtered['datetime_obj'], df_filtered['follower_count_organic'], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers', zorder=1)
ax.plot(df_filtered['datetime_obj'], df_filtered['follower_count_paid'], marker='x', linestyle='--', color='seagreen', label='Paid Followers', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Follower Count')
legend = ax.legend()
if legend:
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_growth_rate_plot(df, **kwargs):
"""Generates a theme-aware plot for follower growth rate."""
type_value = kwargs.get('type_value', 'follower_gains_monthly')
title = f"Follower Growth Rate ({type_value})"
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered['category_name'], errors='coerce')
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce')
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce')
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')
if len(df_filtered) < 2:
return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")
df_filtered['organic_growth_rate'] = df_filtered['follower_count_organic'].pct_change() * 100
df_filtered['paid_growth_rate'] = df_filtered['follower_count_paid'].pct_change() * 100
df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
plotted = False
if not df_filtered['organic_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate', zorder=1)
plotted = True
if not df_filtered['paid_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate', zorder=1)
plotted = True
if not plotted:
return create_placeholder_plot(title=title, message="No growth rate data to display.")
ax.set_xlabel('Date')
ax.set_ylabel('Growth Rate (%)')
ax.yaxis.set_major_formatter(mticker.PercentFormatter())
legend = ax.legend()
if legend:
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_by_demographics_plot(df, **kwargs):
"""Generates a theme-aware bar plot for followers by demographics."""
plot_title = kwargs.get('plot_title', "Followers by Demographics")
type_value = kwargs.get('type_value')
category_col = 'category_name'
if df is None or df.empty or not type_value:
return create_placeholder_plot(title=plot_title, message="No data or demographic type not specified.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=plot_title, message=f"No data for type '{type_value}'.")
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce').fillna(0)
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce').fillna(0)
demographics_data = df_filtered.groupby(category_col)[['follower_count_organic', 'follower_count_paid']].sum()
demographics_data['total_for_sort'] = demographics_data.sum(axis=1)
demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).head(10).drop(columns=['total_for_sort'])
if demographics_data.empty:
return create_placeholder_plot(title=plot_title, message="No demographic data to display.")
fig, ax = plt.subplots(figsize=(12, 7))
_apply_theme_aware_styling(fig, ax)
demographics_data.plot(kind='bar', ax=ax, zorder=1, width=0.8, color=['dodgerblue', 'seagreen'])
ax.set_xlabel(category_col.replace('_', ' ').title())
ax.set_ylabel('Number of Followers')
legend = ax.legend(['Organic', 'Paid'])
if legend:
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
plt.xticks(rotation=45, ha="right")
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.25, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
def generate_generic_time_series_plot(df, date_column, value_column, title, ylabel, color='blue'):
"""Generic function to create a theme-aware time series plot."""
if df is None or df.empty or date_column not in df.columns or value_column not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[value_column] = pd.to_numeric(df_copy[value_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, value_column]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
data_over_time = df_copy.resample('D')[value_column].sum()
if data_over_time.empty:
return create_placeholder_plot(title=title, message="No data in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color=color, zorder=1)
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel(ylabel)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
"""Generates a theme-aware plot for engagement rate with special y-axis formatting."""
title = "Engagement Rate Over Time"
if df is None or df.empty or date_column not in df.columns or engagement_rate_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col])
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
engagement_over_time = df_copy.set_index(date_column).resample('D')[engagement_rate_col].mean().dropna()
if engagement_over_time.empty:
return create_placeholder_plot(title=title, message="No data to display.")
fig, ax = plt.subplots(figsize=(10,5))
_apply_theme_aware_styling(fig,ax)
ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange', zorder=1)
# Determine the correct formatter based on the data's scale
max_rate = engagement_over_time.max()
formatter_xmax = 1.0 if max_rate <= 1.5 else 100.0
ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Engagement Rate')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_reach_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'clickCount', 'Reach Over Time (Clicks)', 'Total Clicks', color='mediumseagreen')
def generate_impressions_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'impressionCount', 'Impressions Over Time', 'Total Impressions', color='slateblue')
def generate_likes_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'likeCount', 'Reactions (Likes) Over Time', 'Total Likes', color='crimson')
def generate_clicks_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'clickCount', 'Clicks Over Time', 'Total Clicks', color='mediumseagreen')
def generate_shares_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'shareCount', 'Shares Over Time', 'Total Shares', color='teal')
def generate_comments_over_time_plot(df, **kwargs):
return generate_generic_time_series_plot(df, 'published_at', 'commentCount', 'Comments Over Time', 'Total Comments', color='gold')
def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', **kwargs):
"""Generates a theme-aware pie chart for comment sentiment."""
title = "Breakdown of Comments by Sentiment"
if df is None or df.empty or sentiment_column not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
sentiment_counts = df[sentiment_column].value_counts().dropna()
if sentiment_counts.empty:
return create_placeholder_plot(title=title, message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
_apply_theme_aware_styling(fig, ax)
THEME_TEXT_COLOR = plt.rcParams.get('text.color', 'black')
pie_slice_colors = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
for text_item in texts + autotexts:
text_item.set_color(THEME_TEXT_COLOR)
ax.set_title(title)
ax.axis('equal')
fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_post_frequency_plot(df, date_column='published_at', **kwargs):
"""Generates a theme-aware plot for post frequency, using .size() for counting."""
title = "Post Frequency Over Time"
if df is None or df.empty or date_column not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
data_over_time = df_copy.resample('D').size() # Use size() to count posts
if data_over_time.empty:
return create_placeholder_plot(title=title, message="No data in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', zorder=1)
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_content_format_breakdown_plot(df, format_col='media_type', **kwargs):
"""Generates a theme-aware bar chart for content format breakdown."""
title = "Breakdown of Content by Format"
if df is None or df.empty or format_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
format_counts = df[format_col].value_counts().dropna()
if format_counts.empty:
return create_placeholder_plot(title=title, message="No format data.")
fig, ax = plt.subplots(figsize=(8,6))
_apply_theme_aware_styling(fig,ax)
format_counts.plot(kind='bar', ax=ax, zorder=1, color=plt.cm.get_cmap('viridis')(np.linspace(0, 1, len(format_counts))))
ax.set_title(title)
ax.set_xlabel('Media Type')
ax.set_ylabel('Number of Posts')
plt.xticks(rotation=45, ha="right")
# Add text labels with theme color
TEXT_COLOR = plt.rcParams.get('text.color', 'black')
for i, v in enumerate(format_counts):
ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom', zorder=2, color=TEXT_COLOR)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.15, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def _parse_eb_label(label_data):
if isinstance(label_data, list): return label_data
if isinstance(label_data, str):
try:
parsed = ast.literal_eval(label_data)
return parsed if isinstance(parsed, list) else [str(parsed)]
except (ValueError, SyntaxError):
return [label_data.strip()] if label_data.strip() else []
return [] if pd.isna(label_data) else [str(label_data)]
def generate_content_topic_breakdown_plot(df, topics_col='li_eb_labels', **kwargs):
"""Generates a theme-aware horizontal bar chart for content topics."""
title = "Breakdown of Content by Topics (Top 15)"
if df is None or df.empty or topics_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
topic_counts = df[topics_col].apply(_parse_eb_label).explode().dropna().value_counts()
topic_counts = topic_counts[topic_counts.index != '']
if topic_counts.empty:
return create_placeholder_plot(title=title, message="No topic data found.")
top_topics = topic_counts.nlargest(15).sort_values(ascending=True)
fig, ax = plt.subplots(figsize=(10, 8))
_apply_theme_aware_styling(fig,ax)
top_topics.plot(kind='barh', ax=ax, zorder=1, color=plt.cm.get_cmap('YlGnBu')(np.linspace(0.3, 1, len(top_topics))))
ax.set_title(title)
ax.set_xlabel('Number of Posts')
ax.set_ylabel('Topic')
# Add text labels with theme color
TEXT_COLOR = plt.rcParams.get('text.color', 'black')
for i, (topic, count) in enumerate(top_topics.items()):
ax.text(count + (0.01 * top_topics.max()), i, f' {count}', va='center', ha='left', zorder=2, color=TEXT_COLOR)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.1, left=0.3, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
"""
Main function to generate all analytics plots based on provided data and configurations.
Uses a dictionary-based approach for cleaner execution.
"""
logging.info(f"Updating analytics plot figures for theme-aware plotting. Filter: {date_filter_option}")
num_expected_plots = len(current_plot_configs)
plot_data_summaries_for_chatbot = {}
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato") for _ in range(num_expected_plots)]
summaries = {p_cfg["id"]: "Accesso negato, nessun dato per il chatbot." for p_cfg in current_plot_configs}
return [message] + placeholder_figs + [summaries]
try:
(filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df,
raw_follower_stats_df, start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date)
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, filtered_merged_posts_df, filtered_mentions_df,
date_filtered_follower_stats_df, raw_follower_stats_df, token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
summaries = {p_cfg["id"]: f"Errore preparazione dati: {e}" for p_cfg in current_plot_configs}
return [error_msg] + placeholder_figs + [summaries]
# Map plot IDs to their respective generation functions
plot_functions = {
"followers_count": lambda: generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'),
"followers_growth_rate": lambda: generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'),
"followers_by_location": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"),
"followers_by_role": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"),
"followers_by_industry": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"),
"followers_by_seniority": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"),
"engagement_rate": lambda: generate_engagement_rate_over_time_plot(filtered_merged_posts_df),
"reach_over_time": lambda: generate_reach_over_time_plot(filtered_merged_posts_df),
"impressions_over_time": lambda: generate_impressions_over_time_plot(filtered_merged_posts_df),
"likes_over_time": lambda: generate_likes_over_time_plot(filtered_merged_posts_df),
"clicks_over_time": lambda: generate_clicks_over_time_plot(filtered_merged_posts_df),
"shares_over_time": lambda: generate_shares_over_time_plot(filtered_merged_posts_df),
"comments_over_time": lambda: generate_comments_over_time_plot(filtered_merged_posts_df),
"comments_sentiment": lambda: generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df),
"post_frequency_cs": lambda: generate_post_frequency_plot(filtered_merged_posts_df),
"content_format_breakdown_cs": lambda: generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=token_state_value.get("config_media_type_col", "media_type")),
"content_topic_breakdown_cs": lambda: generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=token_state_value.get("config_eb_labels_col", "li_eb_labels")),
"mention_analysis_volume": lambda: generate_mentions_activity_plot(filtered_mentions_df, date_column=token_state_value.get("config_date_col_mentions", "date")),
"mention_analysis_sentiment": lambda: generate_mention_sentiment_plot(filtered_mentions_df)
}
plot_figs = []
for config in current_plot_configs:
plot_id = config["id"]
if plot_id in plot_functions:
try:
fig = plot_functions[plot_id]()
plot_figs.append(fig)
except Exception as e:
logging.error(f"Failed to generate plot for '{plot_id}': {e}", exc_info=True)
plot_figs.append(create_placeholder_plot(title=f"Error: {config.get('label', plot_id)}", message=str(e)))
else:
logging.warning(f"No plot function found for ID: '{plot_id}'")
plot_figs.append(create_placeholder_plot(title=f"Plot Not Implemented: {config.get('label', plot_id)}"))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "N/A"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "N/A"
message += f" (Da: {s_display} A: {e_display})"
return [message] + plot_figs + [plot_data_summaries_for_chatbot]
|