Spaces:
Running
Running
# data_models/metrics.py | |
from dataclasses import dataclass, field | |
from typing import List, Dict, Any, Literal | |
# Define literal types for more specific type hinting | |
MetricType = Literal['time_series', 'aggregate', 'categorical'] | |
TimeGranularity = Literal['daily', 'weekly', 'monthly', 'yearly', 'other'] # Added 'yearly' and 'other' | |
class TimeSeriesMetric: | |
"""Structure for time-series based metrics""" | |
metric_name: str | |
values: List[float] = field(default_factory=list) | |
timestamps: List[str] = field(default_factory=list) # Consider using datetime objects or ISO format strings | |
metric_type: MetricType = 'time_series' | |
time_granularity: TimeGranularity = 'monthly' | |
unit: Optional[str] = None # e.g., 'count', '%', 'USD' | |
description: Optional[str] = None # Optional description of the metric | |
def __post_init__(self): | |
if len(self.values) != len(self.timestamps): | |
# Or log a warning, or handle as appropriate for your application | |
raise ValueError(f"Length of values ({len(self.values)}) and timestamps ({len(self.timestamps)}) must match for metric '{self.metric_name}'.") | |
class AgentMetrics: | |
""" | |
Enhanced structure for agent metrics with time-awareness and more details. | |
""" | |
agent_name: str | |
analysis_summary: str # Summary text from the agent's analysis | |
# Specific metric categories | |
time_series_metrics: List[TimeSeriesMetric] = field(default_factory=list) | |
aggregate_metrics: Dict[str, float] = field(default_factory=dict) # Key-value pairs for single value metrics | |
categorical_metrics: Dict[str, Any] = field(default_factory=dict) # For distributions, counts by category, etc. | |
# Example: {'industry_distribution': {'Tech': 100, 'Finance': 50}} | |
# Contextual information | |
time_periods_covered: List[str] = field(default_factory=list) # e.g., ["2023-01", "2023-02"] or ["Q1 2023", "Q2 2023"] | |
data_sources_used: List[str] = field(default_factory=list) # Information about the input data | |
generation_timestamp: str = field(default_factory=lambda: datetime.utcnow().isoformat()) # When these metrics were generated | |
# Optional fields for richer reporting | |
key_insights: List[str] = field(default_factory=list) # Bullet points of key findings | |
potential_errors_or_warnings: List[str] = field(default_factory=list) # Any issues encountered during analysis | |