# data_models/metrics.py from dataclasses import dataclass, field from typing import List, Dict, Any, Literal # Define literal types for more specific type hinting MetricType = Literal['time_series', 'aggregate', 'categorical'] TimeGranularity = Literal['daily', 'weekly', 'monthly', 'yearly', 'other'] # Added 'yearly' and 'other' @dataclass class TimeSeriesMetric: """Structure for time-series based metrics""" metric_name: str values: List[float] = field(default_factory=list) timestamps: List[str] = field(default_factory=list) # Consider using datetime objects or ISO format strings metric_type: MetricType = 'time_series' time_granularity: TimeGranularity = 'monthly' unit: Optional[str] = None # e.g., 'count', '%', 'USD' description: Optional[str] = None # Optional description of the metric def __post_init__(self): if len(self.values) != len(self.timestamps): # Or log a warning, or handle as appropriate for your application raise ValueError(f"Length of values ({len(self.values)}) and timestamps ({len(self.timestamps)}) must match for metric '{self.metric_name}'.") @dataclass class AgentMetrics: """ Enhanced structure for agent metrics with time-awareness and more details. """ agent_name: str analysis_summary: str # Summary text from the agent's analysis # Specific metric categories time_series_metrics: List[TimeSeriesMetric] = field(default_factory=list) aggregate_metrics: Dict[str, float] = field(default_factory=dict) # Key-value pairs for single value metrics categorical_metrics: Dict[str, Any] = field(default_factory=dict) # For distributions, counts by category, etc. # Example: {'industry_distribution': {'Tech': 100, 'Finance': 50}} # Contextual information time_periods_covered: List[str] = field(default_factory=list) # e.g., ["2023-01", "2023-02"] or ["Q1 2023", "Q2 2023"] data_sources_used: List[str] = field(default_factory=list) # Information about the input data generation_timestamp: str = field(default_factory=lambda: datetime.utcnow().isoformat()) # When these metrics were generated # Optional fields for richer reporting key_insights: List[str] = field(default_factory=list) # Bullet points of key findings potential_errors_or_warnings: List[str] = field(default_factory=list) # Any issues encountered during analysis