GuglielmoTor's picture
Update insight_and_tasks/agents/post_agent.py
feaf9aa verified
raw
history blame
29.1 kB
# agents/post_agent.py
import pandas as pd
from typing import Dict, List, Any, Optional
import logging
import pandasai as pai # Assuming pandasai is imported as pai globally or configured
from google.adk.agents import LlmAgent # Assuming this is the correct import path
# Project-specific imports
from utils.retry_mechanism import RetryMechanism
from data_models.metrics import AgentMetrics, TimeSeriesMetric
# Configure logger for this module
logger = logging.getLogger(__name__)
DEFAULT_AGENT_MODEL = "gemini-2.5-flash-preview-05-20"
class EnhancedPostPerformanceAgent:
"""
Enhanced post performance agent with time-series metric extraction and detailed analysis.
"""
AGENT_NAME = "post_analyst"
AGENT_DESCRIPTION = "Expert analyst specializing in content performance trends and engagement patterns."
AGENT_INSTRUCTION = """
You are a specialized LinkedIn content performance expert focused on temporal engagement patterns,
content type effectiveness, and audience interaction.
Your role includes:
1. ENGAGEMENT TREND ANALYSIS (monthly, using 'published_at'):
- Analyze trends for key engagement metrics: likes, comments, shares, overall engagement ('engagement' column), impressions, clicks.
- Calculate and analyze engagement rate (engagement / impressionCount) over time.
- Calculate and analyze click-through rate (CTR: clickCount / impressionCount) over time.
- Identify periods of high/low engagement and potential drivers.
2. CONTENT TYPE & TOPIC PERFORMANCE:
- Compare performance across different media types (using 'media_type' column).
- Analyze performance by content topic/pillar (using 'li_eb_label' column).
- Identify which content types/topics drive the most engagement, impressions, or clicks.
- Analyze if the effectiveness of certain media types or topics changes over time.
3. POSTING BEHAVIOR ANALYSIS:
- Analyze posting frequency (e.g., posts per week/month) and its potential impact on overall engagement or reach.
- Identify if there are optimal posting times or days based on engagement patterns (if 'published_at' provides time detail).
4. SENTIMENT ANALYSIS (if 'sentiment' column is available):
- Analyze the distribution of sentiment (e.g., positive, negative, neutral) associated with posts.
- Track how average sentiment of posts evolves over time.
5. AD PERFORMANCE (if 'is_ad' column is available):
- Compare performance (engagement, reach, CTR) of ad posts vs. organic posts.
6. METRIC EXTRACTION (for AgentMetrics):
- Extract time-series data for average monthly engagement metrics (likes, comments, engagement rate, CTR, etc.).
- Provide aggregate performance metrics (e.g., overall average engagement rate, total impressions, top performing media type).
- Include distributions for content types, topics, and sentiment as categorical metrics.
Focus on actionable insights. What content resonates most? When is the audience most active? How can strategy be improved?
Structure your analysis clearly. Use the provided DataFrame columns ('published_at', 'media_type', 'li_eb_label',
'likeCount', 'commentCount', 'shareCount', 'engagement', 'impressionCount', 'clickCount', 'sentiment', 'is_ad').
"""
def __init__(self, api_key: str, model_name: Optional[str] = None):
self.api_key = api_key
self.model_name = model_name or DEFAULT_AGENT_MODEL
self.agent = LlmAgent(
name=self.AGENT_NAME,
model=self.model_name,
description=self.AGENT_DESCRIPTION,
instruction=self.AGENT_INSTRUCTION
)
self.retry_mechanism = RetryMechanism()
logger.info(f"{self.AGENT_NAME} initialized with model {self.model_name}.")
def _preprocess_post_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Cleans and prepares post data for analysis."""
if df is None or df.empty:
return pd.DataFrame()
df_processed = df.copy()
# Convert 'published_at' to datetime
if 'published_at' in df_processed.columns:
df_processed['published_at'] = pd.to_datetime(df_processed['published_at'], errors='coerce')
# df_processed.dropna(subset=['published_at'], inplace=True) # Keep rows even if date is NaT for other metrics
else:
logger.warning("'published_at' column not found. Time-series analysis will be limited.")
# Add a placeholder if critical for downstream, or handle absence gracefully
# df_processed['published_at'] = pd.NaT
# Ensure numeric types for engagement metrics, coercing errors and filling NaNs
metric_cols = ['likeCount', 'commentCount', 'shareCount', 'engagement', 'impressionCount', 'clickCount']
for col in metric_cols:
if col in df_processed.columns:
df_processed[col] = pd.to_numeric(df_processed[col], errors='coerce').fillna(0)
else:
logger.info(f"Metric column '{col}' not found in post data. Will be treated as 0.")
df_processed[col] = 0 # Add column with zeros if missing
# Calculate Engagement Rate and CTR where possible
if 'impressionCount' in df_processed.columns and 'engagement' in df_processed.columns:
df_processed['engagement_rate'] = df_processed.apply(
lambda row: (row['engagement'] / row['impressionCount']) if row['impressionCount'] > 0 else 0.0, axis=1
)
else:
df_processed['engagement_rate'] = 0.0
if 'impressionCount' in df_processed.columns and 'clickCount' in df_processed.columns:
df_processed['ctr'] = df_processed.apply(
lambda row: (row['clickCount'] / row['impressionCount']) if row['impressionCount'] > 0 else 0.0, axis=1
)
else:
df_processed['ctr'] = 0.0
# Handle 'is_ad' boolean conversion if it exists
if 'is_ad' in df_processed.columns:
df_processed['is_ad'] = df_processed['is_ad'].astype(bool)
else:
df_processed['is_ad'] = False # Assume organic if not specified
# Handle 'sentiment' - ensure it's string, fill NaNs
if 'sentiment' in df_processed.columns:
df_processed['sentiment'] = df_processed['sentiment'].astype(str).fillna('Unknown')
else:
df_processed['sentiment'] = 'Unknown'
# Handle 'media_type' and 'li_eb_label' - ensure string, fill NaNs
for col in ['media_type', 'li_eb_label']:
if col in df_processed.columns:
df_processed[col] = df_processed[col].astype(str).fillna('Unknown')
else:
df_processed[col] = 'Unknown'
return df_processed
def _extract_time_series_metrics(self, df_processed: pd.DataFrame) -> List[TimeSeriesMetric]:
"""Extracts monthly time-series metrics from processed post data."""
ts_metrics = []
if df_processed.empty or 'published_at' not in df_processed.columns or df_processed['published_at'].isnull().all():
logger.info("Cannot extract time-series metrics for posts: 'published_at' is missing or all null.")
return ts_metrics
# Filter out rows where 'published_at' is NaT for time-series aggregation
df_ts = df_processed.dropna(subset=['published_at']).copy()
if df_ts.empty:
logger.info("No valid 'published_at' dates for post time-series metrics after filtering NaT.")
return ts_metrics
df_ts['year_month'] = df_ts['published_at'].dt.strftime('%Y-%m')
# Metrics to average monthly
metrics_to_agg = {
'likeCount': 'mean', 'commentCount': 'mean', 'shareCount': 'mean',
'engagement': 'mean', 'impressionCount': 'mean', 'clickCount': 'mean',
'engagement_rate': 'mean', 'ctr': 'mean'
}
# Filter out metrics not present in the DataFrame
available_metrics_to_agg = {k: v for k, v in metrics_to_agg.items() if k in df_ts.columns}
if not available_metrics_to_agg:
logger.info("No standard engagement metric columns found for time-series aggregation.")
else:
monthly_stats = df_ts.groupby('year_month').agg(available_metrics_to_agg).reset_index()
timestamps = monthly_stats['year_month'].tolist()
for metric_col, agg_type in available_metrics_to_agg.items():
# Use original column name, or a more descriptive one like "avg_monthly_likes"
ts_metrics.append(TimeSeriesMetric(
metric_name=f"avg_monthly_{metric_col.lower()}",
values=monthly_stats[metric_col].fillna(0).tolist(),
timestamps=timestamps,
metric_type="time_series",
time_granularity="monthly",
unit="%" if "_rate" in metric_col or "ctr" in metric_col else "count"
))
# Time series for sentiment distribution (count of posts by sentiment per month)
if 'sentiment' in df_ts.columns and df_ts['sentiment'].nunique() > 1 : # if sentiment data exists
# Ensure 'sentiment' is not all 'Unknown'
if not (df_ts['sentiment'] == 'Unknown').all():
sentiment_by_month = df_ts.groupby(['year_month', 'sentiment']).size().unstack(fill_value=0)
for sentiment_value in sentiment_by_month.columns:
if sentiment_value == 'Unknown' and (sentiment_by_month[sentiment_value] == 0).all():
continue # Skip if 'Unknown' sentiment has no posts
ts_metrics.append(TimeSeriesMetric(
metric_name=f"monthly_post_count_sentiment_{str(sentiment_value).lower().replace(' ', '_')}",
values=sentiment_by_month[sentiment_value].tolist(),
timestamps=sentiment_by_month.index.tolist(), # year_month is the index
metric_type="time_series",
time_granularity="monthly",
unit="count"
))
else:
logger.info("Sentiment data is all 'Unknown', skipping sentiment time series.")
# Time series for post count
monthly_post_counts = df_ts.groupby('year_month').size().reset_index(name='post_count')
if not monthly_post_counts.empty:
ts_metrics.append(TimeSeriesMetric(
metric_name="monthly_post_count",
values=monthly_post_counts['post_count'].tolist(),
timestamps=monthly_post_counts['year_month'].tolist(),
metric_type="time_series",
time_granularity="monthly",
unit="count"
))
return ts_metrics
def _calculate_aggregate_metrics(self, df_processed: pd.DataFrame) -> Dict[str, Any]:
"""Calculates aggregate performance metrics for posts."""
agg_metrics = {}
if df_processed.empty:
return agg_metrics
# Overall averages and totals
metric_cols_for_agg = ['likeCount', 'commentCount', 'shareCount', 'engagement',
'impressionCount', 'clickCount', 'engagement_rate', 'ctr']
for col in metric_cols_for_agg:
if col in df_processed.columns and pd.api.types.is_numeric_dtype(df_processed[col]):
agg_metrics[f'overall_avg_{col.lower()}'] = float(df_processed[col].mean())
if col not in ['engagement_rate', 'ctr']: # Totals make sense for counts
agg_metrics[f'overall_total_{col.lower()}'] = float(df_processed[col].sum())
agg_metrics['total_posts_analyzed'] = float(len(df_processed))
# Posting frequency (posts per week)
if 'published_at' in df_processed.columns and not df_processed['published_at'].isnull().all():
df_dated = df_processed.dropna(subset=['published_at']).sort_values('published_at')
if len(df_dated) > 1:
# Calculate total duration in days
duration_days = (df_dated['published_at'].max() - df_dated['published_at'].min()).days
if duration_days > 0:
agg_metrics['avg_posts_per_week'] = float(len(df_dated) / (duration_days / 7.0))
elif len(df_dated) > 0: # All posts on the same day or within a day
agg_metrics['avg_posts_per_week'] = float(len(df_dated) * 7) # Extrapolate
elif len(df_dated) == 1:
agg_metrics['avg_posts_per_week'] = 7.0 # One post, extrapolate to 7 per week
# Performance by media type and topic (as tables/structured dicts)
agg_metrics['performance_by_media_type'] = self._create_performance_table(df_processed, 'media_type')
agg_metrics['performance_by_topic'] = self._create_performance_table(df_processed, 'li_eb_label')
return agg_metrics
def _create_performance_table(self, df: pd.DataFrame, group_column: str) -> Dict[str, Any]:
"""Helper to create a structured performance table for categorical analysis."""
if group_column not in df.columns or df[group_column].isnull().all() or (df[group_column] == 'Unknown').all():
return {"message": f"No data or only 'Unknown' values for grouping by {group_column}."}
# Filter out 'Unknown' category if it's the only one or for cleaner tables
df_filtered = df[df[group_column] != 'Unknown']
if df_filtered.empty: # If filtering 'Unknown' leaves no data, use original df but acknowledge
df_filtered = df
logger.info(f"Performance table for {group_column} includes 'Unknown' as it's the only/main category.")
# Define metrics to aggregate
agg_config = {
'engagement': 'mean',
'impressionCount': 'mean',
'clickCount': 'mean',
'likeCount': 'mean',
'commentCount': 'mean',
'shareCount': 'mean',
'engagement_rate': 'mean',
'ctr': 'mean',
'published_at': 'count' # To get number of posts per category
}
# Filter config for columns that actually exist in df_filtered
valid_agg_config = {k: v for k, v in agg_config.items() if k in df_filtered.columns or k == 'published_at'} # 'published_at' for count
if not valid_agg_config or 'published_at' not in valid_agg_config : # Need at least one metric or count
return {"message": f"Not enough relevant metric columns to create performance table for {group_column}."}
try:
# Group by the specified column and aggregate
# Rename 'published_at' count to 'num_posts' for clarity
grouped = df_filtered.groupby(group_column).agg(valid_agg_config).rename(
columns={'published_at': 'num_posts'}
).reset_index()
# Sort by a primary engagement metric, e.g., average engagement rate or num_posts
sort_key = 'num_posts'
if 'engagement_rate' in grouped.columns:
sort_key = 'engagement_rate'
elif 'engagement' in grouped.columns:
sort_key = 'engagement'
grouped = grouped.sort_values(by=sort_key, ascending=False)
# Prepare for JSON serializable output
table_data = []
for _, row in grouped.iterrows():
row_dict = {'category': row[group_column]}
for col in grouped.columns:
if col == group_column: continue
value = row[col]
if isinstance(value, (int, float)):
if "_rate" in col or "ctr" in col:
row_dict[col] = f"{value:.2%}" # Percentage
else:
row_dict[col] = round(value, 2) if isinstance(value, float) else value
else:
row_dict[col] = str(value)
table_data.append(row_dict)
return {
"grouping_column": group_column,
"columns_reported": [col for col in grouped.columns.tolist() if col != group_column],
"data": table_data,
"note": f"Top categories by {sort_key}."
}
except Exception as e:
logger.error(f"Error creating performance table for {group_column}: {e}", exc_info=True)
return {"error": f"Could not generate table for {group_column}: {e}"}
def _extract_categorical_metrics(self, df_processed: pd.DataFrame) -> Dict[str, Any]:
"""Extracts distributions and other categorical insights for posts."""
cat_metrics = {}
if df_processed.empty:
return cat_metrics
# Media type distribution
if 'media_type' in df_processed.columns and df_processed['media_type'].nunique() > 0:
cat_metrics['media_type_distribution'] = df_processed['media_type'].value_counts(normalize=True).apply(lambda x: f"{x:.2%}").to_dict()
cat_metrics['media_type_counts'] = df_processed['media_type'].value_counts().to_dict()
# Topic distribution (li_eb_label)
if 'li_eb_label' in df_processed.columns and df_processed['li_eb_label'].nunique() > 0:
cat_metrics['topic_distribution'] = df_processed['li_eb_label'].value_counts(normalize=True).apply(lambda x: f"{x:.2%}").to_dict()
cat_metrics['topic_counts'] = df_processed['li_eb_label'].value_counts().to_dict()
# Sentiment distribution
if 'sentiment' in df_processed.columns and df_processed['sentiment'].nunique() > 0:
cat_metrics['sentiment_distribution'] = df_processed['sentiment'].value_counts(normalize=True).apply(lambda x: f"{x:.2%}").to_dict()
cat_metrics['sentiment_counts'] = df_processed['sentiment'].value_counts().to_dict()
# Ad vs. Organic performance summary
if 'is_ad' in df_processed.columns:
ad_summary = {}
for ad_status in [True, False]:
subset = df_processed[df_processed['is_ad'] == ad_status]
if not subset.empty:
label = "ad" if ad_status else "organic"
ad_summary[f'{label}_post_count'] = int(len(subset))
ad_summary[f'{label}_avg_engagement_rate'] = float(subset['engagement_rate'].mean())
ad_summary[f'{label}_avg_impressions'] = float(subset['impressionCount'].mean())
ad_summary[f'{label}_avg_ctr'] = float(subset['ctr'].mean())
if ad_summary:
cat_metrics['ad_vs_organic_summary'] = ad_summary
return cat_metrics
def _extract_time_periods(self, df_processed: pd.DataFrame) -> List[str]:
"""Extracts unique year-month time periods covered by the post data."""
if df_processed.empty or 'published_at' not in df_processed.columns or df_processed['published_at'].isnull().all():
return ["Data period not available or N/A"]
# Use already created 'year_month' if available from preprocessing, or derive it
if 'year_month' in df_processed.columns:
periods = sorted(df_processed['year_month'].dropna().unique().tolist(), reverse=True)
elif 'published_at' in df_processed.columns: # Derive if not present
dates = df_processed['published_at'].dropna()
if not dates.empty:
periods = sorted(dates.dt.strftime('%Y-%m').unique().tolist(), reverse=True)
else: return ["N/A"]
else: return ["N/A"]
return periods[:12] # Return up to the last 12 months
def analyze_post_data(self, post_df: pd.DataFrame) -> AgentMetrics:
"""
Generates comprehensive post performance analysis.
"""
if post_df is None or post_df.empty:
logger.warning("Post DataFrame is empty. Returning empty metrics.")
return AgentMetrics(
agent_name=self.AGENT_NAME,
analysis_summary="No post data provided for analysis.",
time_periods_covered=["N/A"]
)
# 1. Preprocess data
df_processed = self._preprocess_post_data(post_df)
if df_processed.empty and not post_df.empty : # Preprocessing resulted in empty df
logger.warning("Post DataFrame became empty after preprocessing. Original data might have issues.")
return AgentMetrics(
agent_name=self.AGENT_NAME,
analysis_summary="Post data could not be processed (e.g., all dates invalid).",
time_periods_covered=["N/A"]
)
elif df_processed.empty and post_df.empty: # Was already empty
# This case is handled by the initial check, but as a safeguard:
return AgentMetrics(agent_name=self.AGENT_NAME, analysis_summary="No post data provided.")
# 2. Generate textual analysis using PandasAI (similar to follower agent)
df_description_for_pandasai = "LinkedIn post performance data. Key columns: 'published_at' (date of post), 'media_type' (e.g., IMAGE, VIDEO, ARTICLE), 'li_eb_label' (content topic/pillar), 'likeCount', 'commentCount', 'shareCount', 'engagement' (sum of reactions, comments, shares), 'impressionCount', 'clickCount', 'sentiment' (post sentiment), 'is_ad' (boolean), 'engagement_rate', 'ctr'."
analysis_result_text = "PandasAI analysis for posts could not be performed."
try:
# Ensure PandasAI is configured
pandas_ai_df = pai.DataFrame(df_processed, description=df_description_for_pandasai)
analysis_query = f"""
Analyze the provided LinkedIn post performance data. Focus on:
1. Monthly trends for key metrics (engagement, impressions, engagement rate, CTR).
2. Performance comparison by 'media_type' and 'li_eb_label'. Which ones are most effective?
3. Impact of posting frequency (if derivable from 'published_at' timestamps).
4. Sentiment trends and distribution.
5. Differences in performance between ad posts ('is_ad'=True) and organic posts.
Provide a concise summary of findings and actionable recommendations.
"""
def chat_operation():
if not pai.config.llm:
logger.warning("PandasAI LLM not configured for post agent. Attempting to configure.")
from utils.pandasai_setup import configure_pandasai
configure_pandasai(self.api_key, self.model_name)
if not pai.config.llm:
raise RuntimeError("PandasAI LLM could not be configured for post chat operation.")
logger.info(f"Executing PandasAI chat for post analysis with LLM: {pai.config.llm}")
return pandas_ai_df.chat(analysis_query)
analysis_result_raw = self.retry_mechanism.retry_with_backoff(
func=chat_operation, max_retries=2, base_delay=2.0, exceptions=(Exception,)
)
analysis_result_text = str(analysis_result_raw) if analysis_result_raw else "No textual analysis for posts generated by PandasAI."
logger.info("Post performance analysis via PandasAI completed.")
except Exception as e:
logger.error(f"Post analysis with PandasAI failed: {e}", exc_info=True)
analysis_result_text = f"Post analysis using PandasAI failed. Error: {str(e)[:200]}"
# 3. Extract structured metrics
time_series_metrics = self._extract_time_series_metrics(df_processed)
aggregate_metrics = self._calculate_aggregate_metrics(df_processed)
categorical_metrics = self._extract_categorical_metrics(df_processed)
time_periods = self._extract_time_periods(df_processed)
return AgentMetrics(
agent_name=self.AGENT_NAME,
analysis_summary=analysis_result_text[:2000],
time_series_metrics=time_series_metrics,
aggregate_metrics=aggregate_metrics,
categorical_metrics=categorical_metrics,
time_periods_covered=time_periods,
data_sources_used=[f"post_df (shape: {post_df.shape}) -> df_processed (shape: {df_processed.shape})"]
)
if __name__ == '__main__':
try:
from utils.logging_config import setup_logging
setup_logging()
logger.info("Logging setup for EnhancedPostPerformanceAgent test.")
except ImportError:
logging.basicConfig(level=logging.INFO)
logger.warning("Could not import setup_logging. Using basicConfig.")
MOCK_API_KEY = os.environ.get("GOOGLE_API_KEY", "test_api_key_posts")
MODEL_NAME = DEFAULT_AGENT_MODEL
try:
from utils.pandasai_setup import configure_pandasai
if MOCK_API_KEY != "test_api_key_posts":
configure_pandasai(MOCK_API_KEY, MODEL_NAME)
logger.info("PandasAI configured for testing EnhancedPostPerformanceAgent.")
else:
logger.warning("Using mock API key for posts. PandasAI chat will likely fail or use a mock.")
class MockPandasAIDataFrame:
def __init__(self, df, description): self.df = df; self.description = description
def chat(self, query): return f"Mock PandasAI post response to: {query}"
pai.DataFrame = MockPandasAIDataFrame
except ImportError:
logger.error("utils.pandasai_setup not found. PandasAI will not be configured for posts.")
class MockPandasAIDataFrame:
def __init__(self, df, description): self.df = df; self.description = description
def chat(self, query): return f"Mock PandasAI post response to: {query}"
pai.DataFrame = MockPandasAIDataFrame
sample_post_data = {
'published_at': pd.to_datetime(['2023-01-15', '2023-01-20', '2023-02-10', '2023-02-25', '2023-03-05', None]),
'media_type': ['IMAGE', 'VIDEO', 'IMAGE', 'ARTICLE', 'IMAGE', 'IMAGE'],
'li_eb_label': ['Product Update', 'Company Culture', 'Product Update', 'Industry Insights', 'Company Culture', 'Product Update'],
'likeCount': [100, 150, 120, 80, 200, 50],
'commentCount': [10, 20, 15, 5, 25, 3],
'shareCount': [5, 10, 8, 2, 12, 1],
'engagement': [115, 180, 143, 87, 237, 54], # Sum of likes, comments, shares
'impressionCount': [1000, 1500, 1200, 900, 2000, 600],
'clickCount': [50, 70, 60, 30, 90, 20],
'sentiment': ['Positive πŸ‘', 'Positive πŸ‘', 'Neutral 😐', 'Positive πŸ‘', 'Negative πŸ‘Ž', 'Positive πŸ‘'],
'is_ad': [False, False, True, False, False, True]
}
sample_df_posts = pd.DataFrame(sample_post_data)
post_agent = EnhancedPostPerformanceAgent(api_key=MOCK_API_KEY, model_name=MODEL_NAME)
logger.info("Analyzing sample post data...")
post_metrics_result = post_agent.analyze_post_data(sample_df_posts)
print("\n--- EnhancedPostPerformanceAgent Results ---")
print(f"Agent Name: {post_metrics_result.agent_name}")
print(f"Analysis Summary: {post_metrics_result.analysis_summary}")
print("\nTime Series Metrics (Post):")
for ts_metric in post_metrics_result.time_series_metrics:
print(f" - {ts_metric.metric_name}: {len(ts_metric.values)} data points, e.g., {ts_metric.values[:3]} for ts {ts_metric.timestamps[:3]} (Unit: {ts_metric.unit})")
print("\nAggregate Metrics (Post):")
for key, value in post_metrics_result.aggregate_metrics.items():
if isinstance(value, dict) and 'data' in value: # Performance table
print(f" - {key}: (Table - {value.get('grouping_column', '')}) - {len(value['data'])} categories")
for item in value['data'][:1]: # Print first item for brevity
print(f" Example Category '{item.get('category')}': { {k:v for k,v in item.items() if k!='category'} }")
else:
print(f" - {key}: {value}")
print("\nCategorical Metrics (Post):")
for key, value in post_metrics_result.categorical_metrics.items():
print(f" - {key}:")
if isinstance(value, dict):
for sub_key, sub_value in list(value.items())[:2]:
print(f" - {sub_key}: {sub_value}")
else:
print(f" {value}")
print(f"\nTime Periods Covered (Post): {post_metrics_result.time_periods_covered}")
# Test with empty DataFrame
logger.info("\n--- Testing Post Agent with empty DataFrame ---")
empty_post_metrics = post_agent.analyze_post_data(pd.DataFrame())
print(f"Empty Post DF Analysis Summary: {empty_post_metrics.analysis_summary}")