File size: 29,118 Bytes
feaf9aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# agents/post_agent.py
import pandas as pd
from typing import Dict, List, Any, Optional
import logging
import pandasai as pai # Assuming pandasai is imported as pai globally or configured

from google.adk.agents import LlmAgent # Assuming this is the correct import path

# Project-specific imports
from utils.retry_mechanism import RetryMechanism
from data_models.metrics import AgentMetrics, TimeSeriesMetric

# Configure logger for this module
logger = logging.getLogger(__name__)

DEFAULT_AGENT_MODEL = "gemini-2.5-flash-preview-05-20"

class EnhancedPostPerformanceAgent:
    """
    Enhanced post performance agent with time-series metric extraction and detailed analysis.
    """
    AGENT_NAME = "post_analyst"
    AGENT_DESCRIPTION = "Expert analyst specializing in content performance trends and engagement patterns."
    AGENT_INSTRUCTION = """
    You are a specialized LinkedIn content performance expert focused on temporal engagement patterns, 
    content type effectiveness, and audience interaction.

    Your role includes:
    
    1. ENGAGEMENT TREND ANALYSIS (monthly, using 'published_at'):
       - Analyze trends for key engagement metrics: likes, comments, shares, overall engagement ('engagement' column), impressions, clicks.
       - Calculate and analyze engagement rate (engagement / impressionCount) over time.
       - Calculate and analyze click-through rate (CTR: clickCount / impressionCount) over time.
       - Identify periods of high/low engagement and potential drivers.
       
    2. CONTENT TYPE & TOPIC PERFORMANCE:
       - Compare performance across different media types (using 'media_type' column).
       - Analyze performance by content topic/pillar (using 'li_eb_label' column).
       - Identify which content types/topics drive the most engagement, impressions, or clicks.
       - Analyze if the effectiveness of certain media types or topics changes over time.
       
    3. POSTING BEHAVIOR ANALYSIS:
       - Analyze posting frequency (e.g., posts per week/month) and its potential impact on overall engagement or reach.
       - Identify if there are optimal posting times or days based on engagement patterns (if 'published_at' provides time detail).
       
    4. SENTIMENT ANALYSIS (if 'sentiment' column is available):
       - Analyze the distribution of sentiment (e.g., positive, negative, neutral) associated with posts.
       - Track how average sentiment of posts evolves over time.
       
    5. AD PERFORMANCE (if 'is_ad' column is available):
       - Compare performance (engagement, reach, CTR) of ad posts vs. organic posts.

    6. METRIC EXTRACTION (for AgentMetrics):
       - Extract time-series data for average monthly engagement metrics (likes, comments, engagement rate, CTR, etc.).
       - Provide aggregate performance metrics (e.g., overall average engagement rate, total impressions, top performing media type).
       - Include distributions for content types, topics, and sentiment as categorical metrics.
       
    Focus on actionable insights. What content resonates most? When is the audience most active? How can strategy be improved?
    Structure your analysis clearly. Use the provided DataFrame columns ('published_at', 'media_type', 'li_eb_label', 
    'likeCount', 'commentCount', 'shareCount', 'engagement', 'impressionCount', 'clickCount', 'sentiment', 'is_ad').
    """

    def __init__(self, api_key: str, model_name: Optional[str] = None):
        self.api_key = api_key
        self.model_name = model_name or DEFAULT_AGENT_MODEL
        self.agent = LlmAgent(
            name=self.AGENT_NAME,
            model=self.model_name,
            description=self.AGENT_DESCRIPTION,
            instruction=self.AGENT_INSTRUCTION
        )
        self.retry_mechanism = RetryMechanism()
        logger.info(f"{self.AGENT_NAME} initialized with model {self.model_name}.")

    def _preprocess_post_data(self, df: pd.DataFrame) -> pd.DataFrame:
        """Cleans and prepares post data for analysis."""
        if df is None or df.empty:
            return pd.DataFrame()
        
        df_processed = df.copy()

        # Convert 'published_at' to datetime
        if 'published_at' in df_processed.columns:
            df_processed['published_at'] = pd.to_datetime(df_processed['published_at'], errors='coerce')
            # df_processed.dropna(subset=['published_at'], inplace=True) # Keep rows even if date is NaT for other metrics
        else:
            logger.warning("'published_at' column not found. Time-series analysis will be limited.")
            # Add a placeholder if critical for downstream, or handle absence gracefully
            # df_processed['published_at'] = pd.NaT 

        # Ensure numeric types for engagement metrics, coercing errors and filling NaNs
        metric_cols = ['likeCount', 'commentCount', 'shareCount', 'engagement', 'impressionCount', 'clickCount']
        for col in metric_cols:
            if col in df_processed.columns:
                df_processed[col] = pd.to_numeric(df_processed[col], errors='coerce').fillna(0)
            else:
                logger.info(f"Metric column '{col}' not found in post data. Will be treated as 0.")
                df_processed[col] = 0 # Add column with zeros if missing

        # Calculate Engagement Rate and CTR where possible
        if 'impressionCount' in df_processed.columns and 'engagement' in df_processed.columns:
            df_processed['engagement_rate'] = df_processed.apply(
                lambda row: (row['engagement'] / row['impressionCount']) if row['impressionCount'] > 0 else 0.0, axis=1
            )
        else:
            df_processed['engagement_rate'] = 0.0
            
        if 'impressionCount' in df_processed.columns and 'clickCount' in df_processed.columns:
            df_processed['ctr'] = df_processed.apply(
                lambda row: (row['clickCount'] / row['impressionCount']) if row['impressionCount'] > 0 else 0.0, axis=1
            )
        else:
            df_processed['ctr'] = 0.0
            
        # Handle 'is_ad' boolean conversion if it exists
        if 'is_ad' in df_processed.columns:
            df_processed['is_ad'] = df_processed['is_ad'].astype(bool)
        else:
            df_processed['is_ad'] = False # Assume organic if not specified

        # Handle 'sentiment' - ensure it's string, fill NaNs
        if 'sentiment' in df_processed.columns:
            df_processed['sentiment'] = df_processed['sentiment'].astype(str).fillna('Unknown')
        else:
            df_processed['sentiment'] = 'Unknown'
            
        # Handle 'media_type' and 'li_eb_label' - ensure string, fill NaNs
        for col in ['media_type', 'li_eb_label']:
            if col in df_processed.columns:
                df_processed[col] = df_processed[col].astype(str).fillna('Unknown')
            else:
                df_processed[col] = 'Unknown'

        return df_processed

    def _extract_time_series_metrics(self, df_processed: pd.DataFrame) -> List[TimeSeriesMetric]:
        """Extracts monthly time-series metrics from processed post data."""
        ts_metrics = []
        if df_processed.empty or 'published_at' not in df_processed.columns or df_processed['published_at'].isnull().all():
            logger.info("Cannot extract time-series metrics for posts: 'published_at' is missing or all null.")
            return ts_metrics

        # Filter out rows where 'published_at' is NaT for time-series aggregation
        df_ts = df_processed.dropna(subset=['published_at']).copy()
        if df_ts.empty:
            logger.info("No valid 'published_at' dates for post time-series metrics after filtering NaT.")
            return ts_metrics
            
        df_ts['year_month'] = df_ts['published_at'].dt.strftime('%Y-%m')
        
        # Metrics to average monthly
        metrics_to_agg = {
            'likeCount': 'mean', 'commentCount': 'mean', 'shareCount': 'mean',
            'engagement': 'mean', 'impressionCount': 'mean', 'clickCount': 'mean',
            'engagement_rate': 'mean', 'ctr': 'mean'
        }
        # Filter out metrics not present in the DataFrame
        available_metrics_to_agg = {k: v for k, v in metrics_to_agg.items() if k in df_ts.columns}

        if not available_metrics_to_agg:
            logger.info("No standard engagement metric columns found for time-series aggregation.")
        else:
            monthly_stats = df_ts.groupby('year_month').agg(available_metrics_to_agg).reset_index()
            timestamps = monthly_stats['year_month'].tolist()

            for metric_col, agg_type in available_metrics_to_agg.items():
                # Use original column name, or a more descriptive one like "avg_monthly_likes"
                ts_metrics.append(TimeSeriesMetric(
                    metric_name=f"avg_monthly_{metric_col.lower()}",
                    values=monthly_stats[metric_col].fillna(0).tolist(),
                    timestamps=timestamps,
                    metric_type="time_series",
                    time_granularity="monthly",
                    unit="%" if "_rate" in metric_col or "ctr" in metric_col else "count"
                ))

        # Time series for sentiment distribution (count of posts by sentiment per month)
        if 'sentiment' in df_ts.columns and df_ts['sentiment'].nunique() > 1 : # if sentiment data exists
            # Ensure 'sentiment' is not all 'Unknown'
            if not (df_ts['sentiment'] == 'Unknown').all():
                sentiment_by_month = df_ts.groupby(['year_month', 'sentiment']).size().unstack(fill_value=0)
                for sentiment_value in sentiment_by_month.columns:
                    if sentiment_value == 'Unknown' and (sentiment_by_month[sentiment_value] == 0).all():
                        continue # Skip if 'Unknown' sentiment has no posts
                    ts_metrics.append(TimeSeriesMetric(
                        metric_name=f"monthly_post_count_sentiment_{str(sentiment_value).lower().replace(' ', '_')}",
                        values=sentiment_by_month[sentiment_value].tolist(),
                        timestamps=sentiment_by_month.index.tolist(), # year_month is the index
                        metric_type="time_series",
                        time_granularity="monthly",
                        unit="count"
                    ))
            else:
                logger.info("Sentiment data is all 'Unknown', skipping sentiment time series.")
        
        # Time series for post count
        monthly_post_counts = df_ts.groupby('year_month').size().reset_index(name='post_count')
        if not monthly_post_counts.empty:
            ts_metrics.append(TimeSeriesMetric(
                metric_name="monthly_post_count",
                values=monthly_post_counts['post_count'].tolist(),
                timestamps=monthly_post_counts['year_month'].tolist(),
                metric_type="time_series",
                time_granularity="monthly",
                unit="count"
            ))

        return ts_metrics

    def _calculate_aggregate_metrics(self, df_processed: pd.DataFrame) -> Dict[str, Any]:
        """Calculates aggregate performance metrics for posts."""
        agg_metrics = {}
        if df_processed.empty:
            return agg_metrics

        # Overall averages and totals
        metric_cols_for_agg = ['likeCount', 'commentCount', 'shareCount', 'engagement', 
                               'impressionCount', 'clickCount', 'engagement_rate', 'ctr']
        for col in metric_cols_for_agg:
            if col in df_processed.columns and pd.api.types.is_numeric_dtype(df_processed[col]):
                agg_metrics[f'overall_avg_{col.lower()}'] = float(df_processed[col].mean())
                if col not in ['engagement_rate', 'ctr']: # Totals make sense for counts
                     agg_metrics[f'overall_total_{col.lower()}'] = float(df_processed[col].sum())
            
        agg_metrics['total_posts_analyzed'] = float(len(df_processed))

        # Posting frequency (posts per week)
        if 'published_at' in df_processed.columns and not df_processed['published_at'].isnull().all():
            df_dated = df_processed.dropna(subset=['published_at']).sort_values('published_at')
            if len(df_dated) > 1:
                # Calculate total duration in days
                duration_days = (df_dated['published_at'].max() - df_dated['published_at'].min()).days
                if duration_days > 0:
                    agg_metrics['avg_posts_per_week'] = float(len(df_dated) / (duration_days / 7.0))
                elif len(df_dated) > 0: # All posts on the same day or within a day
                    agg_metrics['avg_posts_per_week'] = float(len(df_dated) * 7) # Extrapolate
            elif len(df_dated) == 1:
                 agg_metrics['avg_posts_per_week'] = 7.0 # One post, extrapolate to 7 per week

        # Performance by media type and topic (as tables/structured dicts)
        agg_metrics['performance_by_media_type'] = self._create_performance_table(df_processed, 'media_type')
        agg_metrics['performance_by_topic'] = self._create_performance_table(df_processed, 'li_eb_label')
            
        return agg_metrics

    def _create_performance_table(self, df: pd.DataFrame, group_column: str) -> Dict[str, Any]:
        """Helper to create a structured performance table for categorical analysis."""
        if group_column not in df.columns or df[group_column].isnull().all() or (df[group_column] == 'Unknown').all():
            return {"message": f"No data or only 'Unknown' values for grouping by {group_column}."}
        
        # Filter out 'Unknown' category if it's the only one or for cleaner tables
        df_filtered = df[df[group_column] != 'Unknown']
        if df_filtered.empty: # If filtering 'Unknown' leaves no data, use original df but acknowledge
            df_filtered = df 
            logger.info(f"Performance table for {group_column} includes 'Unknown' as it's the only/main category.")

        # Define metrics to aggregate
        agg_config = {
            'engagement': 'mean',
            'impressionCount': 'mean',
            'clickCount': 'mean',
            'likeCount': 'mean',
            'commentCount': 'mean',
            'shareCount': 'mean',
            'engagement_rate': 'mean',
            'ctr': 'mean',
            'published_at': 'count'  # To get number of posts per category
        }
        # Filter config for columns that actually exist in df_filtered
        valid_agg_config = {k: v for k, v in agg_config.items() if k in df_filtered.columns or k == 'published_at'} # 'published_at' for count

        if not valid_agg_config or 'published_at' not in valid_agg_config : # Need at least one metric or count
             return {"message": f"Not enough relevant metric columns to create performance table for {group_column}."}


        try:
            # Group by the specified column and aggregate
            # Rename 'published_at' count to 'num_posts' for clarity
            grouped = df_filtered.groupby(group_column).agg(valid_agg_config).rename(
                columns={'published_at': 'num_posts'}
            ).reset_index()

            # Sort by a primary engagement metric, e.g., average engagement rate or num_posts
            sort_key = 'num_posts'
            if 'engagement_rate' in grouped.columns:
                sort_key = 'engagement_rate'
            elif 'engagement' in grouped.columns:
                 sort_key = 'engagement'
            
            grouped = grouped.sort_values(by=sort_key, ascending=False)

            # Prepare for JSON serializable output
            table_data = []
            for _, row in grouped.iterrows():
                row_dict = {'category': row[group_column]}
                for col in grouped.columns:
                    if col == group_column: continue
                    value = row[col]
                    if isinstance(value, (int, float)):
                        if "_rate" in col or "ctr" in col:
                            row_dict[col] = f"{value:.2%}" # Percentage
                        else:
                            row_dict[col] = round(value, 2) if isinstance(value, float) else value
                    else:
                        row_dict[col] = str(value)
                table_data.append(row_dict)
            
            return {
                "grouping_column": group_column,
                "columns_reported": [col for col in grouped.columns.tolist() if col != group_column],
                "data": table_data,
                "note": f"Top categories by {sort_key}."
            }

        except Exception as e:
            logger.error(f"Error creating performance table for {group_column}: {e}", exc_info=True)
            return {"error": f"Could not generate table for {group_column}: {e}"}


    def _extract_categorical_metrics(self, df_processed: pd.DataFrame) -> Dict[str, Any]:
        """Extracts distributions and other categorical insights for posts."""
        cat_metrics = {}
        if df_processed.empty:
            return cat_metrics

        # Media type distribution
        if 'media_type' in df_processed.columns and df_processed['media_type'].nunique() > 0:
            cat_metrics['media_type_distribution'] = df_processed['media_type'].value_counts(normalize=True).apply(lambda x: f"{x:.2%}").to_dict()
            cat_metrics['media_type_counts'] = df_processed['media_type'].value_counts().to_dict()


        # Topic distribution (li_eb_label)
        if 'li_eb_label' in df_processed.columns and df_processed['li_eb_label'].nunique() > 0:
            cat_metrics['topic_distribution'] = df_processed['li_eb_label'].value_counts(normalize=True).apply(lambda x: f"{x:.2%}").to_dict()
            cat_metrics['topic_counts'] = df_processed['li_eb_label'].value_counts().to_dict()

        # Sentiment distribution
        if 'sentiment' in df_processed.columns and df_processed['sentiment'].nunique() > 0:
            cat_metrics['sentiment_distribution'] = df_processed['sentiment'].value_counts(normalize=True).apply(lambda x: f"{x:.2%}").to_dict()
            cat_metrics['sentiment_counts'] = df_processed['sentiment'].value_counts().to_dict()

        # Ad vs. Organic performance summary
        if 'is_ad' in df_processed.columns:
            ad_summary = {}
            for ad_status in [True, False]:
                subset = df_processed[df_processed['is_ad'] == ad_status]
                if not subset.empty:
                    label = "ad" if ad_status else "organic"
                    ad_summary[f'{label}_post_count'] = int(len(subset))
                    ad_summary[f'{label}_avg_engagement_rate'] = float(subset['engagement_rate'].mean())
                    ad_summary[f'{label}_avg_impressions'] = float(subset['impressionCount'].mean())
                    ad_summary[f'{label}_avg_ctr'] = float(subset['ctr'].mean())
            if ad_summary:
                cat_metrics['ad_vs_organic_summary'] = ad_summary
        
        return cat_metrics

    def _extract_time_periods(self, df_processed: pd.DataFrame) -> List[str]:
        """Extracts unique year-month time periods covered by the post data."""
        if df_processed.empty or 'published_at' not in df_processed.columns or df_processed['published_at'].isnull().all():
            return ["Data period not available or N/A"]
        
        # Use already created 'year_month' if available from preprocessing, or derive it
        if 'year_month' in df_processed.columns:
             periods = sorted(df_processed['year_month'].dropna().unique().tolist(), reverse=True)
        elif 'published_at' in df_processed.columns: # Derive if not present
            dates = df_processed['published_at'].dropna()
            if not dates.empty:
                periods = sorted(dates.dt.strftime('%Y-%m').unique().tolist(), reverse=True)
            else: return ["N/A"]
        else: return ["N/A"]
        
        return periods[:12] # Return up to the last 12 months

    def analyze_post_data(self, post_df: pd.DataFrame) -> AgentMetrics:
        """
        Generates comprehensive post performance analysis.
        """
        if post_df is None or post_df.empty:
            logger.warning("Post DataFrame is empty. Returning empty metrics.")
            return AgentMetrics(
                agent_name=self.AGENT_NAME,
                analysis_summary="No post data provided for analysis.",
                time_periods_covered=["N/A"]
            )

        # 1. Preprocess data
        df_processed = self._preprocess_post_data(post_df)
        if df_processed.empty and not post_df.empty : # Preprocessing resulted in empty df
             logger.warning("Post DataFrame became empty after preprocessing. Original data might have issues.")
             return AgentMetrics(
                agent_name=self.AGENT_NAME,
                analysis_summary="Post data could not be processed (e.g., all dates invalid).",
                time_periods_covered=["N/A"]
            )
        elif df_processed.empty and post_df.empty: # Was already empty
            # This case is handled by the initial check, but as a safeguard:
            return AgentMetrics(agent_name=self.AGENT_NAME, analysis_summary="No post data provided.")


        # 2. Generate textual analysis using PandasAI (similar to follower agent)
        df_description_for_pandasai = "LinkedIn post performance data. Key columns: 'published_at' (date of post), 'media_type' (e.g., IMAGE, VIDEO, ARTICLE), 'li_eb_label' (content topic/pillar), 'likeCount', 'commentCount', 'shareCount', 'engagement' (sum of reactions, comments, shares), 'impressionCount', 'clickCount', 'sentiment' (post sentiment), 'is_ad' (boolean), 'engagement_rate', 'ctr'."
        
        analysis_result_text = "PandasAI analysis for posts could not be performed."
        try:
            # Ensure PandasAI is configured
            pandas_ai_df = pai.DataFrame(df_processed, description=df_description_for_pandasai)

            analysis_query = f"""
            Analyze the provided LinkedIn post performance data. Focus on:
            1. Monthly trends for key metrics (engagement, impressions, engagement rate, CTR).
            2. Performance comparison by 'media_type' and 'li_eb_label'. Which ones are most effective?
            3. Impact of posting frequency (if derivable from 'published_at' timestamps).
            4. Sentiment trends and distribution.
            5. Differences in performance between ad posts ('is_ad'=True) and organic posts.
            Provide a concise summary of findings and actionable recommendations.
            """
            def chat_operation():
                if not pai.config.llm:
                    logger.warning("PandasAI LLM not configured for post agent. Attempting to configure.")
                    from utils.pandasai_setup import configure_pandasai
                    configure_pandasai(self.api_key, self.model_name)
                    if not pai.config.llm:
                        raise RuntimeError("PandasAI LLM could not be configured for post chat operation.")
                logger.info(f"Executing PandasAI chat for post analysis with LLM: {pai.config.llm}")
                return pandas_ai_df.chat(analysis_query)

            analysis_result_raw = self.retry_mechanism.retry_with_backoff(
                func=chat_operation, max_retries=2, base_delay=2.0, exceptions=(Exception,)
            )
            analysis_result_text = str(analysis_result_raw) if analysis_result_raw else "No textual analysis for posts generated by PandasAI."
            logger.info("Post performance analysis via PandasAI completed.")

        except Exception as e:
            logger.error(f"Post analysis with PandasAI failed: {e}", exc_info=True)
            analysis_result_text = f"Post analysis using PandasAI failed. Error: {str(e)[:200]}"

        # 3. Extract structured metrics
        time_series_metrics = self._extract_time_series_metrics(df_processed)
        aggregate_metrics = self._calculate_aggregate_metrics(df_processed)
        categorical_metrics = self._extract_categorical_metrics(df_processed)
        time_periods = self._extract_time_periods(df_processed)
        
        return AgentMetrics(
            agent_name=self.AGENT_NAME,
            analysis_summary=analysis_result_text[:2000],
            time_series_metrics=time_series_metrics,
            aggregate_metrics=aggregate_metrics,
            categorical_metrics=categorical_metrics,
            time_periods_covered=time_periods,
            data_sources_used=[f"post_df (shape: {post_df.shape}) -> df_processed (shape: {df_processed.shape})"]
        )

if __name__ == '__main__':
    try:
        from utils.logging_config import setup_logging
        setup_logging()
        logger.info("Logging setup for EnhancedPostPerformanceAgent test.")
    except ImportError:
        logging.basicConfig(level=logging.INFO)
        logger.warning("Could not import setup_logging. Using basicConfig.")

    MOCK_API_KEY = os.environ.get("GOOGLE_API_KEY", "test_api_key_posts")
    MODEL_NAME = DEFAULT_AGENT_MODEL

    try:
        from utils.pandasai_setup import configure_pandasai
        if MOCK_API_KEY != "test_api_key_posts":
            configure_pandasai(MOCK_API_KEY, MODEL_NAME)
            logger.info("PandasAI configured for testing EnhancedPostPerformanceAgent.")
        else:
            logger.warning("Using mock API key for posts. PandasAI chat will likely fail or use a mock.")
            class MockPandasAIDataFrame:
                def __init__(self, df, description): self.df = df; self.description = description
                def chat(self, query): return f"Mock PandasAI post response to: {query}"
            pai.DataFrame = MockPandasAIDataFrame
    except ImportError:
        logger.error("utils.pandasai_setup not found. PandasAI will not be configured for posts.")
        class MockPandasAIDataFrame:
            def __init__(self, df, description): self.df = df; self.description = description
            def chat(self, query): return f"Mock PandasAI post response to: {query}"
        pai.DataFrame = MockPandasAIDataFrame

    sample_post_data = {
        'published_at': pd.to_datetime(['2023-01-15', '2023-01-20', '2023-02-10', '2023-02-25', '2023-03-05', None]),
        'media_type': ['IMAGE', 'VIDEO', 'IMAGE', 'ARTICLE', 'IMAGE', 'IMAGE'],
        'li_eb_label': ['Product Update', 'Company Culture', 'Product Update', 'Industry Insights', 'Company Culture', 'Product Update'],
        'likeCount': [100, 150, 120, 80, 200, 50],
        'commentCount': [10, 20, 15, 5, 25, 3],
        'shareCount': [5, 10, 8, 2, 12, 1],
        'engagement': [115, 180, 143, 87, 237, 54], # Sum of likes, comments, shares
        'impressionCount': [1000, 1500, 1200, 900, 2000, 600],
        'clickCount': [50, 70, 60, 30, 90, 20],
        'sentiment': ['Positive πŸ‘', 'Positive πŸ‘', 'Neutral 😐', 'Positive πŸ‘', 'Negative πŸ‘Ž', 'Positive πŸ‘'],
        'is_ad': [False, False, True, False, False, True]
    }
    sample_df_posts = pd.DataFrame(sample_post_data)

    post_agent = EnhancedPostPerformanceAgent(api_key=MOCK_API_KEY, model_name=MODEL_NAME)
    
    logger.info("Analyzing sample post data...")
    post_metrics_result = post_agent.analyze_post_data(sample_df_posts)

    print("\n--- EnhancedPostPerformanceAgent Results ---")
    print(f"Agent Name: {post_metrics_result.agent_name}")
    print(f"Analysis Summary: {post_metrics_result.analysis_summary}")
    print("\nTime Series Metrics (Post):")
    for ts_metric in post_metrics_result.time_series_metrics:
         print(f"  - {ts_metric.metric_name}: {len(ts_metric.values)} data points, e.g., {ts_metric.values[:3]} for ts {ts_metric.timestamps[:3]} (Unit: {ts_metric.unit})")
    print("\nAggregate Metrics (Post):")
    for key, value in post_metrics_result.aggregate_metrics.items():
        if isinstance(value, dict) and 'data' in value: # Performance table
            print(f"  - {key}: (Table - {value.get('grouping_column', '')}) - {len(value['data'])} categories")
            for item in value['data'][:1]: # Print first item for brevity
                print(f"      Example Category '{item.get('category')}': { {k:v for k,v in item.items() if k!='category'} }")
        else:
            print(f"  - {key}: {value}")
    print("\nCategorical Metrics (Post):")
    for key, value in post_metrics_result.categorical_metrics.items():
        print(f"  - {key}:")
        if isinstance(value, dict):
            for sub_key, sub_value in list(value.items())[:2]:
                 print(f"    - {sub_key}: {sub_value}")
        else:
             print(f"    {value}")
    print(f"\nTime Periods Covered (Post): {post_metrics_result.time_periods_covered}")

    # Test with empty DataFrame
    logger.info("\n--- Testing Post Agent with empty DataFrame ---")
    empty_post_metrics = post_agent.analyze_post_data(pd.DataFrame())
    print(f"Empty Post DF Analysis Summary: {empty_post_metrics.analysis_summary}")