Spaces:
Running
Running
File size: 26,540 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 f7fc39b 575b933 791c130 4ad44b9 575b933 2a3b22e 575b933 9d99925 3b4dccb deb2291 c6716b6 deb2291 c6716b6 deb2291 c6716b6 3b4dccb b0464a9 2a3b22e 3b4dccb 2a3b22e 791c130 575b933 deb2291 c6716b6 deb2291 791c130 3b4dccb a342a6b 575b933 c6716b6 3b4dccb 348bc84 791c130 deb2291 c6716b6 deb2291 791c130 3b4dccb 791c130 348bc84 3b4dccb 791c130 c6716b6 3b4dccb c6716b6 3b4dccb deb2291 348bc84 3b4dccb 348bc84 3b4dccb 791c130 c6716b6 deb2291 c6716b6 deb2291 c6716b6 deb2291 c6716b6 deb2291 791c130 3b4dccb c6716b6 3b4dccb deb2291 c6716b6 deb2291 c6716b6 3b4dccb 348bc84 c6716b6 deb2291 c6716b6 deb2291 c6716b6 deb2291 791c130 575b933 791c130 3b4dccb a342a6b b0464a9 2a3b22e adb3bbe deb2291 179ea1f 67742c4 a342a6b 3b4dccb 348bc84 a342a6b 575b933 deb2291 c6716b6 348bc84 791c130 deb2291 c6716b6 67742c4 adb3bbe a342a6b 575b933 f9d8231 179ea1f a342a6b 575b933 0612e1d 4ad44b9 348bc84 0612e1d adb3bbe 791c130 a342a6b 0612e1d 575b933 a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 791c130 0612e1d 575b933 791c130 0612e1d 575b933 791c130 4ad44b9 791c130 4ad44b9 a342a6b faf26ff 575b933 791c130 3b4dccb 791c130 3b4dccb 791c130 deb2291 791c130 3b902c0 791c130 c6716b6 791c130 c6716b6 791c130 3b4dccb 348bc84 3b4dccb c6716b6 3b4dccb deb2291 c6716b6 deb2291 c6716b6 3b4dccb c6716b6 3b4dccb deb2291 c6716b6 deb2291 c6716b6 3b4dccb c6716b6 791c130 3b4dccb 791c130 deb2291 348bc84 791c130 3b4dccb a342a6b adb3bbe 06d22e5 791c130 a342a6b 791c130 4ad44b9 348bc84 a342a6b 575b933 791c130 a342a6b 791c130 a342a6b 575b933 a342a6b 348bc84 a342a6b 538b42b 791c130 575b933 adb3bbe 575b933 791c130 575b933 791c130 a342a6b 575b933 a342a6b 791c130 a342a6b 791c130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, generate_engagement_type_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot, # For initializing plots
# --- Import existing new plot functions ---
generate_likes_over_time_plot,
generate_clicks_over_time_plot, # Note: can be same as reach
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
# --- Import NEW plot functions for Content Strategy ---
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Analytics Tab: Plot Update Function ---
def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date):
"""
Prepares analytics data using external processing function and then generates plots.
"""
logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
# --- Increased number of expected plots ---
# Original 13 + 5 engagement = 18
# New Content Strategy (3: freq, format, topics)
# New Mention Analysis (2: volume, sentiment - these reuse existing plot objects but are new UI slots)
# Total = 18 + 3 + 2 = 23
num_expected_plots = 23
if not token_state_value or not token_state_value.get("token"):
message = "β Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
# prepare_filtered_analytics_data might need to be updated if new DFs are required for new plots
# (e.g. if 'media_type' or 'eb_labels' are not in 'bubble_posts_df' and need special handling)
# For now, we assume 'filtered_merged_posts_df' contains these columns.
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
# Ensure 'media_type' and 'eb_labels' exist in filtered_merged_posts_df for new plots,
# or handle their absence gracefully in the plot functions themselves (which they do).
# Example: Add dummy columns if they might be missing, for robust testing:
# if 'media_type' not in filtered_merged_posts_df.columns:
# filtered_merged_posts_df['media_type'] = 'Unknown'
# if 'eb_labels' not in filtered_merged_posts_df.columns:
# filtered_merged_posts_df['eb_labels'] = None
except Exception as e:
error_msg = f"β Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
# config_date_col_followers_source = token_state_value.get("config_date_col_followers", "date")
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")
try:
# Existing plots (13)
plot_posts_activity = generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts)
plot_engagement_type = generate_engagement_type_plot(filtered_merged_posts_df)
# These two will be used for the new "Mention Analysis" section as well
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
plot_followers_count = generate_followers_count_over_time_plot(
date_filtered_follower_stats_df,
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'
)
plot_followers_growth_rate = generate_followers_growth_rate_plot(
date_filtered_follower_stats_df,
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'
)
plot_followers_by_location = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_geo', plot_title="Followers by Location")
plot_followers_by_role = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_function', plot_title="Followers by Role")
plot_followers_by_industry = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_industry', plot_title="Followers by Industry")
plot_followers_by_seniority = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_seniority', plot_title="Followers by Seniority")
plot_engagement_rate = generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, engagement_rate_col='engagement')
plot_reach_over_time = generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, reach_col='clickCount')
plot_impressions_over_time = generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, impressions_col='impressionCount')
# Additional Engagement plots (5)
plot_likes_over_time = generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, likes_col='likeCount')
plot_clicks_over_time = generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, clicks_col='clickCount')
plot_shares_over_time = generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, shares_col='shareCount')
plot_comments_over_time = generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, comments_col='commentCount')
# Assuming 'comment_sentiment' column might exist, or 'sentiment' as fallback (handled in plot function)
plot_comments_sentiment_breakdown = generate_comments_sentiment_breakdown_plot(
filtered_merged_posts_df,
sentiment_column='comment_sentiment'
)
# --- Generate NEW plots for Content Strategy (3) ---
# Assuming 'media_type' and 'eb_labels' are in filtered_merged_posts_df
# The plot functions themselves have fallbacks/placeholders if columns are missing.
media_type_col_name = token_state_value.get("config_media_type_col", "media_type") # Example if configurable
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels") # Example if configurable
plot_post_frequency = generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts)
plot_content_format_breakdown = generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name)
plot_content_topic_breakdown = generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)
message = f"π Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
all_generated_plots = [
plot_posts_activity, plot_engagement_type,
fig_mentions_activity_shared, fig_mention_sentiment_shared, # Original mention plots
plot_followers_count, plot_followers_growth_rate,
plot_followers_by_location, plot_followers_by_role, plot_followers_by_industry, plot_followers_by_seniority,
plot_engagement_rate, plot_reach_over_time, plot_impressions_over_time,
# Add new engagement plot objects to the list
plot_likes_over_time, plot_clicks_over_time,
plot_shares_over_time, plot_comments_over_time,
plot_comments_sentiment_breakdown,
# --- Add NEW Content Strategy plot objects ---
plot_post_frequency, plot_content_format_breakdown, plot_content_topic_breakdown,
# --- Add plots for the NEW "Mention Analysis" section (reusing figures) ---
fig_mentions_activity_shared, # Reused figure for new UI slot
fig_mention_sentiment_shared # Reused figure for new UI slot
]
num_plots_generated = sum(1 for p in all_generated_plots if p is not None and not isinstance(p, str))
logging.info(f"Successfully generated {num_plots_generated} plot figures for {num_expected_plots} UI slots.")
# Ensure the number of returned plots matches num_expected_plots, padding with placeholders if necessary
final_plots_list = []
for i, p in enumerate(all_generated_plots): # Iterate up to the expected number of plots
if i < num_expected_plots: # Ensure we don't exceed the expected number of outputs
if p is not None and not isinstance(p, str): # isinstance check for safety
final_plots_list.append(p)
else:
logging.warning(f"A plot generation failed or returned unexpected type for slot {i}, using placeholder. Plot: {p}")
final_plots_list.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot."))
else:
logging.warning(f"Generated more plot figures ({len(all_generated_plots)}) than expected UI slots ({num_expected_plots}). Truncating.")
break
# If fewer plots were generated than expected (e.g. due to early exit or major error in a plot function)
while len(final_plots_list) < num_expected_plots:
logging.warning(f"Padding missing plot with placeholder. Expected {num_expected_plots}, got {len(final_plots_list)} so far.")
final_plots_list.append(create_placeholder_plot(title="Missing Plot", message="Plot could not be generated."))
if len(final_plots_list) > num_expected_plots + 5: # Safety break
logging.error("Too many placeholders added, breaking loop.")
break
return [message] + final_plots_list[:num_expected_plots] # Ensure correct number of outputs
except Exception as e:
error_msg = f"β Error generating analytics plots: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(),
"bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
# Consider adding "bubble_comments_sentiment_df": pd.DataFrame() if you plan to fetch this data
# Add keys for new data if needed by prepare_filtered_analytics_data, e.g.
# "bubble_posts_with_content_details_df": pd.DataFrame(),
"fetch_count_for_api": 0,
"url_user_token_temp_storage": None,
"config_date_col_posts": "published_at",
"config_date_col_mentions": "date",
"config_date_col_followers": "date",
"config_media_type_col": "media_type", # For new plot
"config_eb_labels_col": "eb_labels" # For new plot
})
gr.Markdown("# π LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
sync_click_event = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
).then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
).then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
gr.Markdown("## π LinkedIn Performance Analytics")
gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower demographic plots show overall latest data. Follower time-series plots respect the selected date range if applicable to their data source (e.g. monthly gains).")
analytics_status_md = gr.Markdown("Analytics status will appear here...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range (for Posts, Mentions, and some Follower time-series)",
value="Last 30 Days"
)
custom_start_date_picker = gr.DateTime(label="Start Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime
custom_end_date_picker = gr.DateTime(label="End Date (Custom)", visible=False, include_time=False, type="datetime") # Changed to datetime
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
gr.Markdown("### Posts & Engagement Overview (Filtered by Date)")
with gr.Row():
posts_activity_plot = gr.Plot(label="Posts Activity Over Time")
engagement_type_plot = gr.Plot(label="Post Engagement Types")
# Original Mentions Overview - these plots will also be used for the "Mention Analysis" section below
gr.Markdown("### Mentions Overview (Filtered by Date)")
with gr.Row():
mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time") # Will be updated by fig_mentions_activity_shared
mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution") # Will be updated by fig_mention_sentiment_shared
gr.Markdown("### Follower Dynamics")
with gr.Row():
followers_count_plot = gr.Plot(label="Followers Count Over Time (e.g., Monthly Gains)")
followers_growth_rate_plot = gr.Plot(label="Followers Growth Rate (e.g., Monthly Gains)")
gr.Markdown("### Follower Demographics (Overall Latest Data)")
with gr.Row():
followers_by_location_plot = gr.Plot(label="Followers by Location")
followers_by_role_plot = gr.Plot(label="Followers by Role (Function)")
with gr.Row():
followers_by_industry_plot = gr.Plot(label="Followers by Industry")
followers_by_seniority_plot = gr.Plot(label="Followers by Seniority")
gr.Markdown("### Post Performance Insights (Filtered by Date)")
with gr.Row():
engagement_rate_plot = gr.Plot(label="Engagement Rate Over Time")
reach_over_time_plot = gr.Plot(label="Reach Over Time (Clicks)")
with gr.Row():
impressions_over_time_plot = gr.Plot(label="Impressions Over Time")
likes_over_time_plot = gr.Plot(label="Reactions (Likes) Over Time")
gr.Markdown("### Detailed Post Engagement Over Time (Filtered by Date)")
with gr.Row():
clicks_over_time_plot = gr.Plot(label="Clicks Over Time") # Can be same as reach
shares_over_time_plot = gr.Plot(label="Shares Over Time")
with gr.Row():
comments_over_time_plot = gr.Plot(label="Comments Over Time")
comments_sentiment_plot = gr.Plot(label="Breakdown of Comments by Sentiment")
# --- NEW: Content Strategy Analysis ---
gr.Markdown("### π Content Strategy Analysis (Filtered by Date)")
with gr.Row():
post_frequency_cs_plot = gr.Plot(label="Post Frequency") # New plot component
content_format_breakdown_cs_plot = gr.Plot(label="Breakdown of Content by Format") # New
with gr.Row():
content_topic_breakdown_cs_plot = gr.Plot(label="Breakdown of Content by Topics") # New (might need more width)
# You can add another plot here or make the topic plot wider if needed, e.g. by itself in a row.
# For now, placing it here. If it's too cramped:
# content_topic_breakdown_cs_plot = gr.Plot(label="Breakdown of Content by Topics", elem_id="topic_plot_wide") # and use CSS for width if needed
# --- NEW: Mention Analysis (reusing plots from above) ---
gr.Markdown("### π¬ Mention Analysis (Filtered by Date)")
with gr.Row():
mention_analysis_volume_plot = gr.Plot(label="Mentions Volume Over Time") # New UI slot, uses fig_mentions_activity_shared
mention_analysis_sentiment_plot = gr.Plot(label="Breakdown of Mentions by Sentiment") # New UI slot, uses fig_mention_sentiment_shared
analytics_plot_outputs = [
analytics_status_md,
posts_activity_plot, engagement_type_plot,
mentions_activity_plot, mention_sentiment_plot, # Original mention plots
followers_count_plot, followers_growth_rate_plot,
followers_by_location_plot, followers_by_role_plot,
followers_by_industry_plot, followers_by_seniority_plot,
engagement_rate_plot, reach_over_time_plot, impressions_over_time_plot,
# Add new engagement plot components to the output list
likes_over_time_plot, clicks_over_time_plot,
shares_over_time_plot, comments_over_time_plot,
comments_sentiment_plot,
# --- Add NEW Content Strategy plot components ---
post_frequency_cs_plot, content_format_breakdown_cs_plot, content_topic_breakdown_cs_plot,
# --- Add NEW Mention Analysis plot components (these will receive the reused figures) ---
mention_analysis_volume_plot, mention_analysis_sentiment_plot
]
# Expected length: 1 (status) + 13 (original plots) + 5 (new engagement) + 3 (content strategy) + 2 (mention analysis) = 24
# The update_analytics_plots function returns message + 23 plots. So len(analytics_plot_outputs) should be 24.
# Current count: 1 + 2 + 2 + 2 + 4 + 3 + 5 + 3 + 2 = 24. Correct.
apply_filter_btn.click(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=analytics_plot_outputs,
show_progress="full"
)
# Also update analytics after sync
sync_click_event.then(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=analytics_plot_outputs,
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble environment variables not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|