File size: 48,433 Bytes
6277fe0
b560569
575b933
b0464a9
87a87e7
791c130
 
266ae82
8673558
63031db
 
7aa6c73
65551e2
f7fc39b
575b933
266ae82
575b933
 
 
811c2ba
 
2bd9dad
 
12d4dd6
575b933
a6bc02b
46dea86
9d99925
12d4dd6
6277fe0
2601f1c
5a483f8
abb0fcc
2601f1c
5a483f8
 
7aa6c73
 
 
12d4dd6
7aa6c73
 
 
 
 
 
265cb73
7aa6c73
 
 
 
 
 
 
2a3b22e
3b4dccb
2a3b22e
77179e2
1644cc1
77179e2
 
1644cc1
77179e2
 
 
1644cc1
77179e2
1644cc1
77179e2
b0464a9
2a3b22e
adb3bbe
65551e2
67742c4
a342a6b
6a8e128
265cb73
 
6a8e128
 
 
2601f1c
67742c4
6277fe0
5a483f8
6277fe0
 
 
adb3bbe
7aa6c73
 
 
 
 
 
a342a6b
d33040c
 
 
6277fe0
a342a6b
575b933
0612e1d
4ad44b9
266ae82
0612e1d
adb3bbe
791c130
 
d33040c
 
 
 
6277fe0
265cb73
d33040c
1644cc1
 
6277fe0
8673558
791c130
d33040c
265cb73
791c130
6277fe0
 
 
8673558
265cb73
791c130
 
d33040c
3b902c0
 
791c130
 
 
 
 
6277fe0
266ae82
d33040c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265cb73
 
266ae82
265cb73
 
 
 
 
 
a6bc02b
 
 
6a8e128
1644cc1
 
6277fe0
1644cc1
 
ddd95f0
8673558
 
cb60e91
a6bc02b
9a76dec
a6bc02b
9a76dec
a6bc02b
 
1644cc1
a6bc02b
cb60e91
1644cc1
 
9a76dec
a6bc02b
6277fe0
1644cc1
6277fe0
2601f1c
6277fe0
2601f1c
 
 
 
6277fe0
2601f1c
 
 
 
 
 
6277fe0
2601f1c
 
 
1644cc1
 
9a76dec
 
 
6277fe0
9a76dec
 
1644cc1
2601f1c
9a76dec
2601f1c
 
9a76dec
6277fe0
1644cc1
84a0a22
1644cc1
 
9a76dec
1644cc1
8673558
 
6277fe0
a6bc02b
1644cc1
9a76dec
 
 
1644cc1
9a76dec
ddd95f0
1644cc1
9a76dec
1644cc1
 
9a76dec
 
1644cc1
 
 
9a76dec
1644cc1
5a483f8
1644cc1
 
 
cb60e91
1644cc1
 
 
9a76dec
 
1644cc1
ddd95f0
a6bc02b
2601f1c
9a76dec
 
1644cc1
9a76dec
 
1644cc1
 
 
9a76dec
 
ddd95f0
1644cc1
9a76dec
 
1644cc1
9a76dec
1644cc1
 
 
5a483f8
998bc4b
ddd95f0
a6bc02b
2601f1c
cb60e91
 
 
9a76dec
 
 
cb60e91
1644cc1
cb60e91
1644cc1
 
9a76dec
cb60e91
 
 
a6bc02b
cb60e91
 
 
 
 
 
 
a6bc02b
9a76dec
a6bc02b
1644cc1
9a76dec
1644cc1
 
84a0a22
cb60e91
 
1644cc1
 
cb60e91
9a76dec
 
6277fe0
1644cc1
cb60e91
 
1644cc1
 
eb46c40
9a76dec
1644cc1
 
cb60e91
9a76dec
1644cc1
 
 
 
 
cb60e91
 
 
1644cc1
a6bc02b
1644cc1
 
 
 
 
a6bc02b
 
dc88746
1644cc1
092a033
ddd95f0
 
eb46c40
ddd95f0
1644cc1
 
 
a6bc02b
2601f1c
6277fe0
a6bc02b
cb60e91
 
 
 
 
265cb73
 
 
7aa6c73
1644cc1
 
 
 
7aa6c73
265cb73
1644cc1
 
 
7aa6c73
 
1644cc1
 
7aa6c73
 
1644cc1
7aa6c73
1644cc1
7aa6c73
1644cc1
7aa6c73
1644cc1
7aa6c73
1644cc1
7aa6c73
1644cc1
7aa6c73
1644cc1
7aa6c73
 
1644cc1
 
 
 
 
 
 
7aa6c73
 
1644cc1
7aa6c73
1644cc1
 
7aa6c73
 
 
1644cc1
 
 
 
 
 
 
7aa6c73
1644cc1
 
 
 
 
265cb73
 
1644cc1
 
 
265cb73
 
 
 
 
1644cc1
 
 
 
 
 
 
 
265cb73
 
 
1644cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aa6c73
1644cc1
265cb73
1644cc1
7aa6c73
1644cc1
 
 
 
7aa6c73
5a483f8
1644cc1
 
 
 
 
 
 
265cb73
 
1644cc1
 
 
265cb73
 
1644cc1
 
 
 
 
 
 
 
 
 
 
 
 
265cb73
1644cc1
 
265cb73
1644cc1
265cb73
1644cc1
 
 
 
 
 
 
 
 
 
 
 
 
5a483f8
 
266ae82
cb60e91
adb3bbe
a6bc02b
 
 
265cb73
 
a6bc02b
 
265cb73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# app.py
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict, defaultdict # To maintain section order and for OKR processing
import asyncio # For async operations

# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
    LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
    PLOT_ID_TO_FORMULA_KEY_MAP)
from services.state_manager import process_and_store_bubble_token
from services.sync_logic import sync_all_linkedin_data_orchestrator
from ui.ui_generators import (
    display_main_dashboard,
    build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
    BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS

# --- EXISTING CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END EXISTING CHATBOT MODULE IMPORTS ---

# --- NEW AGENTIC PIPELINE IMPORTS ---
try:
    from run_agentic_pipeline import run_full_analytics_orchestration
    from ui.insights_ui_generator import (
        format_report_to_markdown,
        extract_key_results_for_selection,
        format_single_okr_for_display
    )
    AGENTIC_MODULES_LOADED = True
except ImportError as e:
    logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 (formerly 5 and 6) will be disabled.")
    AGENTIC_MODULES_LOADED = False
    # Define placeholder functions if modules are not loaded to avoid NameErrors
    async def run_full_analytics_orchestration(*args, **kwargs): return None
    def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable."
    def extract_key_results_for_selection(okrs_dict): return []
    def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable."

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# 1. Set Vertex AI usage preference (if applicable)
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"

# 2. Get your API key from your chosen environment variable name
user_provided_api_key = os.environ.get("GEMINI_API_KEY")

if user_provided_api_key:
    os.environ["GOOGLE_API_KEY"] = user_provided_api_key
    logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
    logging.error(f"CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found. The application may not function correctly.")


# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
                title="LinkedIn Organization Dashboard") as app:
    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
        "bubble_mentions_df": pd.DataFrame(), # Data still in state, but not used by UI
        "bubble_follower_stats_df": pd.DataFrame(), # Data still in state, but not used by UI
        "fetch_count_for_api": 0, "url_user_token_temp_storage": None,
        "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
        "config_date_col_followers": "date", "config_media_type_col": "media_type",
        "config_eb_labels_col": "li_eb_label"
    })

    # States for existing analytics tab chatbot
    chat_histories_st = gr.State({})
    current_chat_plot_id_st = gr.State(None)
    plot_data_for_chatbot_st = gr.State({})

    # --- NEW STATES FOR AGENTIC PIPELINE ---
    orchestration_raw_results_st = gr.State(None)
    key_results_for_selection_st = gr.State([])
    selected_key_result_ids_st = gr.State([])


    gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
    url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
    org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    def initial_load_sequence(url_token, org_urn_val, current_state):
        status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
        dashboard_content = display_main_dashboard(new_state)
        return status_msg, new_state, btn_update, dashboard_content

    with gr.Tabs() as tabs:
        with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
            gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
            sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
            sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
            dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")

        with gr.TabItem("2️⃣ Analisi Grafici", id="tab_analytics"): # Renamed for clarity
            gr.Markdown("## 📈 Analisi Performance LinkedIn")
            gr.Markdown("Seleziona un intervallo di date per i grafici. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
            analytics_status_md = gr.Markdown("Stato analisi grafici...")

            with gr.Row():
                date_filter_selector = gr.Radio(
                    ["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
                    label="Seleziona Intervallo Date per Grafici", value="Sempre", scale=3
                )
                with gr.Column(scale=2):
                    custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
                    custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")

            apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Grafici", variant="primary")

            def toggle_custom_date_pickers(selection):
                is_custom = selection == "Intervallo Personalizzato"
                return gr.update(visible=is_custom), gr.update(visible=is_custom)

            date_filter_selector.change(
                fn=toggle_custom_date_pickers,
                inputs=[date_filter_selector],
                outputs=[custom_start_date_picker, custom_end_date_picker]
            )

            plot_configs = [
                {"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
                {"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
                {"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
                {"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
                {"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
                {"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
                {"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
                {"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
                {"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
                {"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
                {"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
                {"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
                {"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
                {"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"}, # This plot might need data from the removed mentions tab. Consider if this plot should also be removed or if its data source is independent.
                {"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"} # Same as above.
            ]
            # IMPORTANT: Review if 'mention_analysis_volume' and 'mention_analysis_sentiment' plots
            # can still be generated without the dedicated mentions data processing.
            # If not, they should also be removed from plot_configs.
            # For now, I am assuming they might draw from a general data pool in token_state.

            assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi. (If mentions plots were removed, adjust this number)"
            
            unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
            num_unique_sections = len(unique_ordered_sections)

            active_panel_action_state = gr.State(None)
            explored_plot_id_state = gr.State(None)

            plot_ui_objects = {}
            section_titles_map = {}

            with gr.Row(equal_height=False):
                with gr.Column(scale=8) as plots_area_col:
                    ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
                    if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
                        plot_ui_objects, section_titles_map = ui_elements_tuple
                        if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
                            logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
                            for sec_name in unique_ordered_sections:
                                if sec_name not in section_titles_map:
                                    section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
                    else:
                        logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
                        plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {}
                        for sec_name in unique_ordered_sections:
                            section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")


                with gr.Column(scale=4, visible=False) as global_actions_column_ui:
                    gr.Markdown("### 💡 Azioni Contestuali Grafico")
                    insights_chatbot_ui = gr.Chatbot(
                        label="Chat Insights", type="messages", height=450,
                        bubble_full_width=False, visible=False, show_label=False,
                        placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
                    )
                    insights_chat_input_ui = gr.Textbox(
                        label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
                        lines=2, visible=False, show_label=False
                    )
                    with gr.Row(visible=False) as insights_suggestions_row_ui:
                        insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
                        insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
                        insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)

                    formula_display_markdown_ui = gr.Markdown(
                        "I dettagli sulla formula/metodologia appariranno qui.", visible=False
                    )
                    formula_close_hint_md = gr.Markdown(
                        "<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
                        visible=False
                    )

            async def handle_panel_action(
                plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
                current_chat_histories: dict, current_chat_plot_id: str,
                current_plot_data_for_chatbot: dict, current_explored_plot_id: str
            ):
                logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
                clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
                if not clicked_plot_config:
                    logging.error(f"Config not found for plot_id {plot_id_clicked}")
                    num_plots = len(plot_configs)
                    error_list_len = 15 + (4 * num_plots) + num_unique_sections
                    error_list = [gr.update()] * error_list_len
                    error_list[11] = current_active_action_from_state; error_list[12] = current_chat_plot_id
                    error_list[13] = current_chat_histories; error_list[14] = current_explored_plot_id
                    return error_list
                clicked_plot_label = clicked_plot_config["label"]; clicked_plot_section = clicked_plot_config["section"]
                hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
                is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
                action_col_visible_update = gr.update(visible=False)
                insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
                formula_display_visible_update = gr.update(visible=False); formula_close_hint_visible_update = gr.update(visible=False)
                chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
                new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
                updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
                generated_panel_vis_updates = []; generated_bomb_btn_updates = []; generated_formula_btn_updates = []; generated_explore_btn_updates = []
                section_title_vis_updates = [gr.update()] * num_unique_sections
                if is_toggling_off:
                    new_active_action_state_to_set = None; action_col_visible_update = gr.update(visible=False)
                    logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
                    for _ in plot_configs: generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON)); generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))
                    if current_explored_plot_id:
                        explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
                        explored_sec = explored_cfg["section"] if explored_cfg else None
                        for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
                        for cfg in plot_configs: is_exp = (cfg["id"] == current_explored_plot_id); generated_panel_vis_updates.append(gr.update(visible=is_exp)); generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
                    else:
                        for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
                        for _ in plot_configs: generated_panel_vis_updates.append(gr.update(visible=True)); generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
                    if action_type == "insights": new_current_chat_plot_id = None
                else:
                    new_active_action_state_to_set = hypothetical_new_active_state; action_col_visible_update = gr.update(visible=True)
                    new_explored_plot_id_to_set = None
                    logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")
                    for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
                    for cfg in plot_configs: generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked))); generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
                    for cfg_btn in plot_configs:
                        is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
                        is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
                        generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON)); generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
                    if action_type == "insights":
                        insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
                        new_current_chat_plot_id = plot_id_clicked
                        history = current_chat_histories.get(plot_id_clicked, [])
                        summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
                        if not history:
                            prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
                            llm_hist = [{"role": "user", "content": prompt}]
                            resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary)
                            history = [{"role": "assistant", "content": resp}]; updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
                        else: _, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
                        chatbot_content_update = gr.update(value=history)
                        s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
                    elif action_type == "formula":
                        formula_display_visible_update = gr.update(visible=True); formula_close_hint_visible_update = gr.update(visible=True)
                        f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
                        f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
                        if f_key and f_key in PLOT_FORMULAS: f_data = PLOT_FORMULAS[f_key]; f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
                        else: f_text += "(No detailed formula information found.)"
                        formula_content_update = gr.update(value=f_text); new_current_chat_plot_id = None
                final_updates = [action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update, s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update, formula_close_hint_visible_update, new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories, new_explored_plot_id_to_set]
                final_updates.extend(generated_panel_vis_updates); final_updates.extend(generated_bomb_btn_updates); final_updates.extend(generated_formula_btn_updates); final_updates.extend(generated_explore_btn_updates); final_updates.extend(section_title_vis_updates)
                logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
                return final_updates

            async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
                if not current_plot_id or not user_message.strip():
                    current_history_for_plot = chat_histories.get(current_plot_id, [])
                    if not isinstance(current_history_for_plot, list): current_history_for_plot = []
                    yield current_history_for_plot, gr.update(value=""), chat_histories; return
                cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
                lbl = cfg["label"] if cfg else "Selected Plot"
                summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
                hist_for_plot = chat_histories.get(current_plot_id, [])
                if not isinstance(hist_for_plot, list): hist_for_plot = []
                hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
                yield hist, gr.update(value=""), chat_histories
                resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary)
                hist.append({"role": "assistant", "content": resp})
                updated_chat_histories = {**chat_histories, current_plot_id: hist}
                yield hist, "", updated_chat_histories

            async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
                if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
                    current_history_for_plot = chat_histories.get(current_plot_id, [])
                    if not isinstance(current_history_for_plot, list): current_history_for_plot = []
                    yield current_history_for_plot, gr.update(value=""), chat_histories; return
                async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
                    yield update_chunk

            def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
                logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
                num_plots = len(plot_configs)
                if not plot_ui_objects:
                    logging.error("plot_ui_objects not populated for handle_explore_click.")
                    error_list_len = 4 + (4 * num_plots) + num_unique_sections; error_list = [gr.update()] * error_list_len
                    error_list[0] = current_explored_plot_id_from_state; error_list[2] = current_active_panel_action_state
                    return error_list
                new_explored_id_to_set = None
                is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)
                action_col_upd = gr.update(); new_active_panel_state_upd = current_active_panel_action_state; formula_hint_upd = gr.update(visible=False)
                panel_vis_updates = []; explore_btns_updates = []; bomb_btns_updates = []; formula_btns_updates = []
                section_title_vis_updates = [gr.update()] * num_unique_sections
                clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
                sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
                if is_toggling_off_explore:
                    new_explored_id_to_set = None
                    logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
                    for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
                    for _ in plot_configs: panel_vis_updates.append(gr.update(visible=True)); explore_btns_updates.append(gr.update(value=EXPLORE_ICON)); bomb_btns_updates.append(gr.update()); formula_btns_updates.append(gr.update())
                else:
                    new_explored_id_to_set = plot_id_clicked
                    logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
                    for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
                    for cfg in plot_configs: is_target = (cfg["id"] == new_explored_id_to_set); panel_vis_updates.append(gr.update(visible=is_target)); explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
                    if current_active_panel_action_state:
                        logging.info("Closing active insight/formula panel due to explore click.")
                        action_col_upd = gr.update(visible=False); new_active_panel_state_upd = None; formula_hint_upd = gr.update(visible=False)
                        bomb_btns_updates = [gr.update(value=BOMB_ICON) for _ in plot_configs]; formula_btns_updates = [gr.update(value=FORMULA_ICON) for _ in plot_configs]
                    else: bomb_btns_updates = [gr.update() for _ in plot_configs]; formula_btns_updates = [gr.update() for _ in plot_configs]
                final_explore_updates = [new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd]
                final_explore_updates.extend(panel_vis_updates); final_explore_updates.extend(explore_btns_updates); final_explore_updates.extend(bomb_btns_updates); final_explore_updates.extend(formula_btns_updates); final_explore_updates.extend(section_title_vis_updates)
                logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
                return final_explore_updates

            _base_action_panel_ui_outputs = [global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui, insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_display_markdown_ui, formula_close_hint_md]
            _action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
            action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs
            action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
            _explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
            explore_outputs_list = _explore_base_outputs
            explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
            action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
            explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
            def create_panel_action_handler(p_id, action_type_str):
                async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id): return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
                return _handler
            for config_item in plot_configs:
                plot_id = config_item["id"]
                if plot_id in plot_ui_objects:
                    ui_obj = plot_ui_objects[plot_id]
                    if ui_obj.get("bomb_button"): ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
                    if ui_obj.get("formula_button"): ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
                    if ui_obj.get("explore_button"): ui_obj["explore_button"].click(fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val), inputs=explore_click_inputs, outputs=explore_outputs_list, api_name=f"action_explore_{plot_id}")
                else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
            chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
            chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
            insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
            suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
            insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
            insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
            insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")

        # Tab 3 (Menzioni) and Tab 4 (Statistiche Follower) are removed.

        with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): # Renumbered from 5
            gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
            agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
            gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
            agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
            if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")

        with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): # Renumbered from 6
            gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
            gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
            if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Suggested Key Results (da analisi 'Sempre')")
                    key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
                with gr.Column(scale=3):
                    gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
                    okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.")
            def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
                if not raw_orchestration_results or not AGENTIC_MODULES_LOADED: return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.")
                actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
                if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list): return gr.update(value="Nessun OKR trovato nei risultati della pipeline.")
                okrs_list = actionable_okrs_dict["okrs"]
                kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
                selected_krs_by_okr_idx = defaultdict(list)
                if selected_kr_unique_ids:
                    for kr_unique_id in selected_kr_unique_ids:
                        if kr_unique_id in kr_id_to_indices: okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]; selected_krs_by_okr_idx[okr_idx].append(kr_idx)
                output_md_parts = []
                if not okrs_list: output_md_parts.append("Nessun OKR generato.")
                else:
                    for okr_idx, okr_data in enumerate(okrs_list):
                        accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx)
                        if selected_kr_unique_ids:
                            if accepted_indices_for_this_okr is not None: output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
                        else: output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
                if not output_md_parts and selected_kr_unique_ids: final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
                elif not output_md_parts and not selected_kr_unique_ids: final_md = "Nessun OKR generato."
                else: final_md = "\n\n---\n\n".join(output_md_parts)
                return gr.update(value=final_md)
            if AGENTIC_MODULES_LOADED:
                key_results_cbg.change(fn=update_okr_display_on_selection, inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], outputs=[okr_detail_display_md])

    async def refresh_analytics_graphs_ui(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
        logging.info("Refreshing analytics graph UI elements and resetting actions/chat.")
        start_time = time.time()
        plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
        status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
        all_updates = [status_msg]
        all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))])
        all_updates.extend([gr.update(visible=False), gr.update(value=[], visible=False), gr.update(value="", visible=False), gr.update(visible=False), gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"), gr.update(value="Formula details here.", visible=False), gr.update(visible=False)])
        all_updates.extend([None, None, {}, new_summaries])
        for _ in plot_configs: all_updates.extend([gr.update(value=BOMB_ICON), gr.update(value=FORMULA_ICON), gr.update(value=EXPLORE_ICON), gr.update(visible=True)])
        all_updates.append(None)
        all_updates.extend([gr.update(visible=True)] * num_unique_sections)
        end_time = time.time()
        logging.info(f"Analytics graph refresh took {end_time - start_time:.2f} seconds.")
        expected_len = 15 + 5 * len(plot_configs) + num_unique_sections
        logging.info(f"Prepared {len(all_updates)} updates for graph refresh. Expected {expected_len}.")
        return tuple(all_updates)

    async def run_agentic_pipeline_autonomously(current_token_state_val): # Removed request: gr.Request for simplicity
        logging.info(f"Agentic pipeline check triggered for token_state update. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")

        if not current_token_state_val or not current_token_state_val.get("token"):
            logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
            yield (
                gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
                gr.update(choices=[], value=[], interactive=False),
                gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
                None, [], [], "Pipeline AI: In attesa dei dati..."
            )
            return

        logging.info("Agentic pipeline starting autonomously with 'Sempre' filter.")
        yield (
            gr.update(value="Analisi AI (Sempre) in corso..."),
            gr.update(choices=[], value=[], interactive=False),
            gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
            orchestration_raw_results_st.value, # Preserve existing results if any during processing
            selected_key_result_ids_st.value,
            key_results_for_selection_st.value,
            "Esecuzione pipeline AI (Sempre)..."
        )

        if not AGENTIC_MODULES_LOADED:
            logging.warning("Agentic modules not loaded. Skipping autonomous pipeline.")
            yield (
                gr.update(value="Moduli AI non caricati. Report non disponibile."),
                gr.update(choices=[], value=[], interactive=False),
                gr.update(value="Moduli AI non caricati. OKR non disponibili."),
                None, [], [], "Pipeline AI: Moduli non caricati."
            )
            return

        try:
            date_filter_val_agentic = "Sempre"; custom_start_val_agentic = None; custom_end_val_agentic = None
            orchestration_output = await run_full_analytics_orchestration(current_token_state_val, date_filter_val_agentic, custom_start_val_agentic, custom_end_val_agentic)
            agentic_status_text = "Pipeline AI (Sempre) completata."
            logging.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
            if orchestration_output:
                orchestration_results_update = orchestration_output
                report_str = orchestration_output.get('comprehensive_analysis_report')
                agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
                actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks')
                krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs)
                krs_for_selection_update = krs_for_ui_selection_list
                kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
                key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True)
                all_okrs_md_parts = []
                if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
                    for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]): all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
                if not all_okrs_md_parts: okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).")
                else: okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
                selected_krs_update = []
            else:
                agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).")
                key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
                okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).")
                orchestration_results_update = None; selected_krs_update = []; krs_for_selection_update = []
            yield (agentic_report_md_update, key_results_cbg_update, okr_detail_display_md_update, orchestration_results_update, selected_krs_update, krs_for_selection_update, agentic_status_text)
        except Exception as e:
            logging.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True)
            agentic_status_text = f"Errore pipeline AI (Sempre): {str(e)}"
            yield (gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}"), gr.update(choices=[], value=[], interactive=False), gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}"), None, [], [], agentic_status_text)

    graph_refresh_outputs_list = [analytics_status_md]
    graph_refresh_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs])
    _ui_resets_for_graphs = [global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_close_hint_md]
    graph_refresh_outputs_list.extend(_ui_resets_for_graphs)
    _state_resets_for_graphs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
    graph_refresh_outputs_list.extend(_state_resets_for_graphs)
    for pc in plot_configs: pid = pc["id"]; graph_refresh_outputs_list.extend([plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()), plot_ui_objects.get(pid, {}).get("formula_button", gr.update()), plot_ui_objects.get(pid, {}).get("explore_button", gr.update()), plot_ui_objects.get(pid, {}).get("panel_component", gr.update())])
    graph_refresh_outputs_list.append(explored_plot_id_state)
    graph_refresh_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])

    agentic_pipeline_outputs_list = [agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md]
    
    graph_refresh_inputs = [token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st]
    agentic_pipeline_inputs = [token_state]

    apply_filter_btn.click(
        fn=refresh_analytics_graphs_ui,
        inputs=graph_refresh_inputs,
        outputs=graph_refresh_outputs_list,
        show_progress="full"
    )

    initial_load_event = org_urn_display.change(
        fn=initial_load_sequence,
        inputs=[url_user_token_display, org_urn_display, token_state],
        outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
        show_progress="full"
    )
    initial_load_event.then(
        fn=refresh_analytics_graphs_ui,
        inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
        outputs=graph_refresh_outputs_list,
        show_progress="full"
    ).then(
        fn=run_agentic_pipeline_autonomously,
        inputs=agentic_pipeline_inputs,
        outputs=agentic_pipeline_outputs_list,
        show_progress="minimal"
    )

    sync_event_part1 = sync_data_btn.click(
        fn=sync_all_linkedin_data_orchestrator,
        inputs=[token_state],
        outputs=[sync_status_html_output, token_state],
        show_progress="full"
    )
    sync_event_part2 = sync_event_part1.then(
        fn=process_and_store_bubble_token,
        inputs=[url_user_token_display, org_urn_display, token_state],
        outputs=[status_box, token_state, sync_data_btn],
        show_progress=False
    )
    sync_event_part2.then( # This will now use the updated token_state from process_and_store_bubble_token
        fn=run_agentic_pipeline_autonomously,
        inputs=agentic_pipeline_inputs, # token_state is the first element
        outputs=agentic_pipeline_outputs_list,
        show_progress="minimal"
    )
    sync_event_part3 = sync_event_part2.then(
        fn=display_main_dashboard,
        inputs=[token_state],
        outputs=[dashboard_display_html],
        show_progress=False
    )
    sync_event_graphs_after_sync = sync_event_part3.then(
        fn=refresh_analytics_graphs_ui,
        inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
        outputs=graph_refresh_outputs_list,
        show_progress="full"
    )


if __name__ == "__main__":
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
    if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
        logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
    if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (formerly 5 and 6) will be non-functional.")
    if not os.environ.get("GEMINI_API_KEY") and AGENTIC_MODULES_LOADED: logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 3 e 4 potrebbe non funzionare.")
    try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
    except ImportError: logging.warning("Matplotlib non trovato.")
    app.launch(server_name="0.0.0.0", server_port=7860, debug=True)