Spaces:
Running
Running
File size: 48,433 Bytes
6277fe0 b560569 575b933 b0464a9 87a87e7 791c130 266ae82 8673558 63031db 7aa6c73 65551e2 f7fc39b 575b933 266ae82 575b933 811c2ba 2bd9dad 12d4dd6 575b933 a6bc02b 46dea86 9d99925 12d4dd6 6277fe0 2601f1c 5a483f8 abb0fcc 2601f1c 5a483f8 7aa6c73 12d4dd6 7aa6c73 265cb73 7aa6c73 2a3b22e 3b4dccb 2a3b22e 77179e2 1644cc1 77179e2 1644cc1 77179e2 1644cc1 77179e2 1644cc1 77179e2 b0464a9 2a3b22e adb3bbe 65551e2 67742c4 a342a6b 6a8e128 265cb73 6a8e128 2601f1c 67742c4 6277fe0 5a483f8 6277fe0 adb3bbe 7aa6c73 a342a6b d33040c 6277fe0 a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 d33040c 6277fe0 265cb73 d33040c 1644cc1 6277fe0 8673558 791c130 d33040c 265cb73 791c130 6277fe0 8673558 265cb73 791c130 d33040c 3b902c0 791c130 6277fe0 266ae82 d33040c 265cb73 266ae82 265cb73 a6bc02b 6a8e128 1644cc1 6277fe0 1644cc1 ddd95f0 8673558 cb60e91 a6bc02b 9a76dec a6bc02b 9a76dec a6bc02b 1644cc1 a6bc02b cb60e91 1644cc1 9a76dec a6bc02b 6277fe0 1644cc1 6277fe0 2601f1c 6277fe0 2601f1c 6277fe0 2601f1c 6277fe0 2601f1c 1644cc1 9a76dec 6277fe0 9a76dec 1644cc1 2601f1c 9a76dec 2601f1c 9a76dec 6277fe0 1644cc1 84a0a22 1644cc1 9a76dec 1644cc1 8673558 6277fe0 a6bc02b 1644cc1 9a76dec 1644cc1 9a76dec ddd95f0 1644cc1 9a76dec 1644cc1 9a76dec 1644cc1 9a76dec 1644cc1 5a483f8 1644cc1 cb60e91 1644cc1 9a76dec 1644cc1 ddd95f0 a6bc02b 2601f1c 9a76dec 1644cc1 9a76dec 1644cc1 9a76dec ddd95f0 1644cc1 9a76dec 1644cc1 9a76dec 1644cc1 5a483f8 998bc4b ddd95f0 a6bc02b 2601f1c cb60e91 9a76dec cb60e91 1644cc1 cb60e91 1644cc1 9a76dec cb60e91 a6bc02b cb60e91 a6bc02b 9a76dec a6bc02b 1644cc1 9a76dec 1644cc1 84a0a22 cb60e91 1644cc1 cb60e91 9a76dec 6277fe0 1644cc1 cb60e91 1644cc1 eb46c40 9a76dec 1644cc1 cb60e91 9a76dec 1644cc1 cb60e91 1644cc1 a6bc02b 1644cc1 a6bc02b dc88746 1644cc1 092a033 ddd95f0 eb46c40 ddd95f0 1644cc1 a6bc02b 2601f1c 6277fe0 a6bc02b cb60e91 265cb73 7aa6c73 1644cc1 7aa6c73 265cb73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 7aa6c73 1644cc1 265cb73 1644cc1 265cb73 1644cc1 265cb73 1644cc1 7aa6c73 1644cc1 265cb73 1644cc1 7aa6c73 1644cc1 7aa6c73 5a483f8 1644cc1 265cb73 1644cc1 265cb73 1644cc1 265cb73 1644cc1 265cb73 1644cc1 265cb73 1644cc1 5a483f8 266ae82 cb60e91 adb3bbe a6bc02b 265cb73 a6bc02b 265cb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
# app.py
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict, defaultdict # To maintain section order and for OKR processing
import asyncio # For async operations
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP)
from services.state_manager import process_and_store_bubble_token
from services.sync_logic import sync_all_linkedin_data_orchestrator
from ui.ui_generators import (
display_main_dashboard,
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS
# --- EXISTING CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END EXISTING CHATBOT MODULE IMPORTS ---
# --- NEW AGENTIC PIPELINE IMPORTS ---
try:
from run_agentic_pipeline import run_full_analytics_orchestration
from ui.insights_ui_generator import (
format_report_to_markdown,
extract_key_results_for_selection,
format_single_okr_for_display
)
AGENTIC_MODULES_LOADED = True
except ImportError as e:
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 (formerly 5 and 6) will be disabled.")
AGENTIC_MODULES_LOADED = False
# Define placeholder functions if modules are not loaded to avoid NameErrors
async def run_full_analytics_orchestration(*args, **kwargs): return None
def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable."
def extract_key_results_for_selection(okrs_dict): return []
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable."
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# 1. Set Vertex AI usage preference (if applicable)
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
# 2. Get your API key from your chosen environment variable name
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
logging.error(f"CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found. The application may not function correctly.")
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), # Data still in state, but not used by UI
"bubble_follower_stats_df": pd.DataFrame(), # Data still in state, but not used by UI
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for existing analytics tab chatbot
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({})
# --- NEW STATES FOR AGENTIC PIPELINE ---
orchestration_raw_results_st = gr.State(None)
key_results_for_selection_st = gr.State([])
selected_key_result_ids_st = gr.State([])
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
with gr.TabItem("2️⃣ Analisi Grafici", id="tab_analytics"): # Renamed for clarity
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date per i grafici. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi grafici...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date per Grafici", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Grafici", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"}, # This plot might need data from the removed mentions tab. Consider if this plot should also be removed or if its data source is independent.
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"} # Same as above.
]
# IMPORTANT: Review if 'mention_analysis_volume' and 'mention_analysis_sentiment' plots
# can still be generated without the dedicated mentions data processing.
# If not, they should also be removed from plot_configs.
# For now, I am assuming they might draw from a general data pool in token_state.
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi. (If mentions plots were removed, adjust this number)"
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
num_unique_sections = len(unique_ordered_sections)
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
section_titles_map = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
plot_ui_objects, section_titles_map = ui_elements_tuple
if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
for sec_name in unique_ordered_sections:
if sec_name not in section_titles_map:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
else:
logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {}
for sec_name in unique_ordered_sections:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
formula_close_hint_md = gr.Markdown(
"<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
visible=False
)
async def handle_panel_action(
plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
current_chat_histories: dict, current_chat_plot_id: str,
current_plot_data_for_chatbot: dict, current_explored_plot_id: str
):
logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Config not found for plot_id {plot_id_clicked}")
num_plots = len(plot_configs)
error_list_len = 15 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[11] = current_active_action_from_state; error_list[12] = current_chat_plot_id
error_list[13] = current_chat_histories; error_list[14] = current_explored_plot_id
return error_list
clicked_plot_label = clicked_plot_config["label"]; clicked_plot_section = clicked_plot_config["section"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
action_col_visible_update = gr.update(visible=False)
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False); formula_close_hint_visible_update = gr.update(visible=False)
chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
generated_panel_vis_updates = []; generated_bomb_btn_updates = []; generated_formula_btn_updates = []; generated_explore_btn_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
if is_toggling_off:
new_active_action_state_to_set = None; action_col_visible_update = gr.update(visible=False)
logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
for _ in plot_configs: generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON)); generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))
if current_explored_plot_id:
explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
explored_sec = explored_cfg["section"] if explored_cfg else None
for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
for cfg in plot_configs: is_exp = (cfg["id"] == current_explored_plot_id); generated_panel_vis_updates.append(gr.update(visible=is_exp)); generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
else:
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs: generated_panel_vis_updates.append(gr.update(visible=True)); generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
if action_type == "insights": new_current_chat_plot_id = None
else:
new_active_action_state_to_set = hypothetical_new_active_state; action_col_visible_update = gr.update(visible=True)
new_explored_plot_id_to_set = None
logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")
for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
for cfg in plot_configs: generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked))); generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
for cfg_btn in plot_configs:
is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON)); generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
if action_type == "insights":
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
history = current_chat_histories.get(plot_id_clicked, [])
summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
if not history:
prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
llm_hist = [{"role": "user", "content": prompt}]
resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary)
history = [{"role": "assistant", "content": resp}]; updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
else: _, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
chatbot_content_update = gr.update(value=history)
s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True); formula_close_hint_visible_update = gr.update(visible=True)
f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
if f_key and f_key in PLOT_FORMULAS: f_data = PLOT_FORMULAS[f_key]; f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
else: f_text += "(No detailed formula information found.)"
formula_content_update = gr.update(value=f_text); new_current_chat_plot_id = None
final_updates = [action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update, s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update, formula_close_hint_visible_update, new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories, new_explored_plot_id_to_set]
final_updates.extend(generated_panel_vis_updates); final_updates.extend(generated_bomb_btn_updates); final_updates.extend(generated_formula_btn_updates); final_updates.extend(generated_explore_btn_updates); final_updates.extend(section_title_vis_updates)
logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
return final_updates
async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
if not current_plot_id or not user_message.strip():
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
lbl = cfg["label"] if cfg else "Selected Plot"
summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
hist_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(hist_for_plot, list): hist_for_plot = []
hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
yield hist, gr.update(value=""), chat_histories
resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary)
hist.append({"role": "assistant", "content": resp})
updated_chat_histories = {**chat_histories, current_plot_id: hist}
yield hist, "", updated_chat_histories
async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
yield update_chunk
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
num_plots = len(plot_configs)
if not plot_ui_objects:
logging.error("plot_ui_objects not populated for handle_explore_click.")
error_list_len = 4 + (4 * num_plots) + num_unique_sections; error_list = [gr.update()] * error_list_len
error_list[0] = current_explored_plot_id_from_state; error_list[2] = current_active_panel_action_state
return error_list
new_explored_id_to_set = None
is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)
action_col_upd = gr.update(); new_active_panel_state_upd = current_active_panel_action_state; formula_hint_upd = gr.update(visible=False)
panel_vis_updates = []; explore_btns_updates = []; bomb_btns_updates = []; formula_btns_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
if is_toggling_off_explore:
new_explored_id_to_set = None
logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs: panel_vis_updates.append(gr.update(visible=True)); explore_btns_updates.append(gr.update(value=EXPLORE_ICON)); bomb_btns_updates.append(gr.update()); formula_btns_updates.append(gr.update())
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
for cfg in plot_configs: is_target = (cfg["id"] == new_explored_id_to_set); panel_vis_updates.append(gr.update(visible=is_target)); explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
if current_active_panel_action_state:
logging.info("Closing active insight/formula panel due to explore click.")
action_col_upd = gr.update(visible=False); new_active_panel_state_upd = None; formula_hint_upd = gr.update(visible=False)
bomb_btns_updates = [gr.update(value=BOMB_ICON) for _ in plot_configs]; formula_btns_updates = [gr.update(value=FORMULA_ICON) for _ in plot_configs]
else: bomb_btns_updates = [gr.update() for _ in plot_configs]; formula_btns_updates = [gr.update() for _ in plot_configs]
final_explore_updates = [new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd]
final_explore_updates.extend(panel_vis_updates); final_explore_updates.extend(explore_btns_updates); final_explore_updates.extend(bomb_btns_updates); final_explore_updates.extend(formula_btns_updates); final_explore_updates.extend(section_title_vis_updates)
logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
return final_explore_updates
_base_action_panel_ui_outputs = [global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui, insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_display_markdown_ui, formula_close_hint_md]
_action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
_explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
explore_outputs_list = _explore_base_outputs
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id): return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
if ui_obj.get("bomb_button"): ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
if ui_obj.get("formula_button"): ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
if ui_obj.get("explore_button"): ui_obj["explore_button"].click(fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val), inputs=explore_click_inputs, outputs=explore_outputs_list, api_name=f"action_explore_{plot_id}")
else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
# Tab 3 (Menzioni) and Tab 4 (Statistiche Follower) are removed.
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): # Renumbered from 5
gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): # Renumbered from 6
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Suggested Key Results (da analisi 'Sempre')")
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
with gr.Column(scale=3):
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.")
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED: return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.")
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list): return gr.update(value="Nessun OKR trovato nei risultati della pipeline.")
okrs_list = actionable_okrs_dict["okrs"]
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
selected_krs_by_okr_idx = defaultdict(list)
if selected_kr_unique_ids:
for kr_unique_id in selected_kr_unique_ids:
if kr_unique_id in kr_id_to_indices: okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]; selected_krs_by_okr_idx[okr_idx].append(kr_idx)
output_md_parts = []
if not okrs_list: output_md_parts.append("Nessun OKR generato.")
else:
for okr_idx, okr_data in enumerate(okrs_list):
accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx)
if selected_kr_unique_ids:
if accepted_indices_for_this_okr is not None: output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
else: output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
if not output_md_parts and selected_kr_unique_ids: final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
elif not output_md_parts and not selected_kr_unique_ids: final_md = "Nessun OKR generato."
else: final_md = "\n\n---\n\n".join(output_md_parts)
return gr.update(value=final_md)
if AGENTIC_MODULES_LOADED:
key_results_cbg.change(fn=update_okr_display_on_selection, inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], outputs=[okr_detail_display_md])
async def refresh_analytics_graphs_ui(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
logging.info("Refreshing analytics graph UI elements and resetting actions/chat.")
start_time = time.time()
plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
all_updates = [status_msg]
all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))])
all_updates.extend([gr.update(visible=False), gr.update(value=[], visible=False), gr.update(value="", visible=False), gr.update(visible=False), gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"), gr.update(value="Formula details here.", visible=False), gr.update(visible=False)])
all_updates.extend([None, None, {}, new_summaries])
for _ in plot_configs: all_updates.extend([gr.update(value=BOMB_ICON), gr.update(value=FORMULA_ICON), gr.update(value=EXPLORE_ICON), gr.update(visible=True)])
all_updates.append(None)
all_updates.extend([gr.update(visible=True)] * num_unique_sections)
end_time = time.time()
logging.info(f"Analytics graph refresh took {end_time - start_time:.2f} seconds.")
expected_len = 15 + 5 * len(plot_configs) + num_unique_sections
logging.info(f"Prepared {len(all_updates)} updates for graph refresh. Expected {expected_len}.")
return tuple(all_updates)
async def run_agentic_pipeline_autonomously(current_token_state_val): # Removed request: gr.Request for simplicity
logging.info(f"Agentic pipeline check triggered for token_state update. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
if not current_token_state_val or not current_token_state_val.get("token"):
logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
yield (
gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
gr.update(choices=[], value=[], interactive=False),
gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
None, [], [], "Pipeline AI: In attesa dei dati..."
)
return
logging.info("Agentic pipeline starting autonomously with 'Sempre' filter.")
yield (
gr.update(value="Analisi AI (Sempre) in corso..."),
gr.update(choices=[], value=[], interactive=False),
gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
orchestration_raw_results_st.value, # Preserve existing results if any during processing
selected_key_result_ids_st.value,
key_results_for_selection_st.value,
"Esecuzione pipeline AI (Sempre)..."
)
if not AGENTIC_MODULES_LOADED:
logging.warning("Agentic modules not loaded. Skipping autonomous pipeline.")
yield (
gr.update(value="Moduli AI non caricati. Report non disponibile."),
gr.update(choices=[], value=[], interactive=False),
gr.update(value="Moduli AI non caricati. OKR non disponibili."),
None, [], [], "Pipeline AI: Moduli non caricati."
)
return
try:
date_filter_val_agentic = "Sempre"; custom_start_val_agentic = None; custom_end_val_agentic = None
orchestration_output = await run_full_analytics_orchestration(current_token_state_val, date_filter_val_agentic, custom_start_val_agentic, custom_end_val_agentic)
agentic_status_text = "Pipeline AI (Sempre) completata."
logging.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
if orchestration_output:
orchestration_results_update = orchestration_output
report_str = orchestration_output.get('comprehensive_analysis_report')
agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks')
krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs)
krs_for_selection_update = krs_for_ui_selection_list
kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True)
all_okrs_md_parts = []
if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]): all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
if not all_okrs_md_parts: okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).")
else: okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
selected_krs_update = []
else:
agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).")
orchestration_results_update = None; selected_krs_update = []; krs_for_selection_update = []
yield (agentic_report_md_update, key_results_cbg_update, okr_detail_display_md_update, orchestration_results_update, selected_krs_update, krs_for_selection_update, agentic_status_text)
except Exception as e:
logging.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True)
agentic_status_text = f"Errore pipeline AI (Sempre): {str(e)}"
yield (gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}"), gr.update(choices=[], value=[], interactive=False), gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}"), None, [], [], agentic_status_text)
graph_refresh_outputs_list = [analytics_status_md]
graph_refresh_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs])
_ui_resets_for_graphs = [global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_close_hint_md]
graph_refresh_outputs_list.extend(_ui_resets_for_graphs)
_state_resets_for_graphs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
graph_refresh_outputs_list.extend(_state_resets_for_graphs)
for pc in plot_configs: pid = pc["id"]; graph_refresh_outputs_list.extend([plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()), plot_ui_objects.get(pid, {}).get("formula_button", gr.update()), plot_ui_objects.get(pid, {}).get("explore_button", gr.update()), plot_ui_objects.get(pid, {}).get("panel_component", gr.update())])
graph_refresh_outputs_list.append(explored_plot_id_state)
graph_refresh_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
agentic_pipeline_outputs_list = [agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md]
graph_refresh_inputs = [token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st]
agentic_pipeline_inputs = [token_state]
apply_filter_btn.click(
fn=refresh_analytics_graphs_ui,
inputs=graph_refresh_inputs,
outputs=graph_refresh_outputs_list,
show_progress="full"
)
initial_load_event = org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
initial_load_event.then(
fn=refresh_analytics_graphs_ui,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=graph_refresh_outputs_list,
show_progress="full"
).then(
fn=run_agentic_pipeline_autonomously,
inputs=agentic_pipeline_inputs,
outputs=agentic_pipeline_outputs_list,
show_progress="minimal"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
)
sync_event_part2.then( # This will now use the updated token_state from process_and_store_bubble_token
fn=run_agentic_pipeline_autonomously,
inputs=agentic_pipeline_inputs, # token_state is the first element
outputs=agentic_pipeline_outputs_list,
show_progress="minimal"
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
sync_event_graphs_after_sync = sync_event_part3.then(
fn=refresh_analytics_graphs_ui,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=graph_refresh_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (formerly 5 and 6) will be non-functional.")
if not os.environ.get("GEMINI_API_KEY") and AGENTIC_MODULES_LOADED: logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 3 e 4 potrebbe non funzionare.")
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError: logging.warning("Matplotlib non trovato.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) |