Spaces:
Running
Running
File size: 55,648 Bytes
6277fe0 b560569 575b933 b0464a9 87a87e7 791c130 266ae82 8673558 63031db 7aa6c73 65551e2 f7fc39b 575b933 266ae82 575b933 811c2ba 575b933 266ae82 a6bc02b 46dea86 9d99925 46dea86 6277fe0 2601f1c 5a483f8 abb0fcc 2601f1c 5a483f8 7aa6c73 2a3b22e 3b4dccb 2a3b22e 77179e2 b0464a9 2a3b22e adb3bbe 65551e2 67742c4 a342a6b 6a8e128 2601f1c 67742c4 6277fe0 5a483f8 6277fe0 adb3bbe 7aa6c73 a342a6b d33040c 6277fe0 a342a6b 575b933 0612e1d 4ad44b9 266ae82 7aa6c73 0612e1d adb3bbe 791c130 d33040c 6277fe0 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 8673558 d33040c 2601f1c d33040c 6277fe0 8673558 791c130 d33040c 791c130 6277fe0 8673558 d33040c 791c130 d33040c 3b902c0 791c130 6277fe0 266ae82 d33040c 266ae82 d33040c a6bc02b 6a8e128 5a483f8 6277fe0 a6bc02b 9a76dec ddd95f0 8673558 cb60e91 a6bc02b 9a76dec a6bc02b 9a76dec a6bc02b 5a483f8 a6bc02b cb60e91 5a483f8 9a76dec a6bc02b 6277fe0 5a483f8 6277fe0 2601f1c 6277fe0 2601f1c 6277fe0 2601f1c 6277fe0 2601f1c 5a483f8 9a76dec 5a483f8 6277fe0 9a76dec 2601f1c 9a76dec 6277fe0 2601f1c 9a76dec 6277fe0 cb60e91 84a0a22 cb60e91 9a76dec 2601f1c a6bc02b 8673558 6277fe0 a6bc02b 2601f1c 84a0a22 9a76dec 2601f1c 9a76dec 2601f1c cb60e91 9a76dec ddd95f0 cb60e91 ddd95f0 5a483f8 9a76dec cb60e91 84a0a22 9a76dec a6bc02b 9a76dec cb60e91 84a0a22 9a76dec 6277fe0 cb60e91 5a483f8 7aa6c73 5a483f8 6277fe0 cb60e91 8673558 5a483f8 cb60e91 6277fe0 84a0a22 9a76dec 84a0a22 cb60e91 5a483f8 cb60e91 84a0a22 9a76dec cb60e91 ddd95f0 a6bc02b 2601f1c 9a76dec 5a483f8 9a76dec 5a483f8 9a76dec 5a483f8 cb60e91 9a76dec cb60e91 ddd95f0 2601f1c 84a0a22 9a76dec 5a483f8 6277fe0 ddd95f0 a6bc02b 9a76dec f1d603c a6bc02b 6277fe0 5a483f8 65551e2 7aa6c73 5a483f8 cb60e91 5a483f8 998bc4b ddd95f0 a6bc02b 2601f1c cb60e91 9a76dec cb60e91 5a483f8 cb60e91 5a483f8 cb60e91 5a483f8 9a76dec cb60e91 a6bc02b cb60e91 2601f1c a6bc02b 5a483f8 9a76dec a6bc02b 9a76dec cb60e91 84a0a22 5a483f8 84a0a22 cb60e91 9a76dec 5a483f8 cb60e91 9a76dec 6277fe0 5a483f8 cb60e91 6277fe0 cb60e91 5a483f8 eb46c40 9a76dec cb60e91 a6bc02b cb60e91 9a76dec 5a483f8 7aa6c73 cb60e91 6277fe0 cb60e91 6277fe0 a6bc02b 5a483f8 a6bc02b 5a483f8 2601f1c a6bc02b 5a483f8 7aa6c73 5a483f8 84a0a22 5a483f8 7aa6c73 5a483f8 a6bc02b 8673558 dc88746 a6bc02b 092a033 998bc4b ddd95f0 eb46c40 ddd95f0 cb60e91 5a483f8 7aa6c73 a6bc02b 6277fe0 cb60e91 2601f1c 6277fe0 a6bc02b cb60e91 d33040c 4ad44b9 eb46c40 a342a6b 575b933 d33040c 6277fe0 d33040c a342a6b d33040c 2601f1c a342a6b 266ae82 a342a6b 538b42b 5a483f8 7aa6c73 5a483f8 a6bc02b 5a483f8 7aa6c73 5a483f8 266ae82 cb60e91 adb3bbe a6bc02b 5a483f8 7aa6c73 a6bc02b 5a483f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
# app.py
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict, defaultdict # To maintain section order and for OKR processing
import asyncio # For async operations
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS
# --- EXISTING CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END EXISTING CHATBOT MODULE IMPORTS ---
# --- NEW AGENTIC PIPELINE IMPORTS ---
try:
from run_agentic_pipeline import run_full_analytics_orchestration
from insights_ui_generator import (
format_report_to_markdown,
extract_key_results_for_selection,
format_single_okr_for_display
)
AGENTIC_MODULES_LOADED = True
except ImportError as e:
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 5 and 6 will be disabled.")
AGENTIC_MODULES_LOADED = False
# Define placeholder functions if modules are not loaded to avoid NameErrors
async def run_full_analytics_orchestration(*args, **kwargs): return None
def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable."
def extract_key_results_for_selection(okrs_dict): return []
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable."
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# 1. Set Vertex AI usage preference (if applicable)
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
# 2. Get your API key from your chosen environment variable name
# Replace "YOUR_GEMINI_API_KEY_ENV_NAME" with the actual name you use, e.g., "GEMINI_API_KEY" or "GOOGLE_API_KEY"
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
logging.info("GOOGLE_API_KEY environment variable has been set from YOUR_GEMINI_API_KEY_ENV_NAME.")
else:
logging.error(f"CRITICAL ERROR: The API key environment variable 'YOUR_GEMINI_API_KEY_ENV_NAME' was not found. The application may not function correctly.")
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for existing analytics tab chatbot
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({})
# --- NEW STATES FOR AGENTIC PIPELINE ---
orchestration_raw_results_st = gr.State(None)
# Stores list of dicts: {'okr_index', 'kr_index', 'okr_objective', 'kr_description', 'unique_kr_id'}
key_results_for_selection_st = gr.State([])
# Stores list of unique_kr_id strings that are selected by the user
selected_key_result_ids_st = gr.State([])
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
# Initial call to populate analytics plots with default "Sempre"
# This will now also trigger the agentic pipeline for the first time.
# However, the outputs for agentic tabs are handled by apply_filter_btn.click and sync.then
# So, we don't need to return agentic UI updates from here directly.
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
num_unique_sections = len(unique_ordered_sections)
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
section_titles_map = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
plot_ui_objects, section_titles_map = ui_elements_tuple
if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
for sec_name in unique_ordered_sections:
if sec_name not in section_titles_map:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
else:
logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {}
for sec_name in unique_ordered_sections:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
formula_close_hint_md = gr.Markdown( # Component for the hint's visibility
"<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
visible=False
)
# --- ASYNC HANDLERS FOR ANALYTICS TAB ---
async def handle_panel_action(
plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
current_chat_histories: dict, current_chat_plot_id: str,
current_plot_data_for_chatbot: dict, current_explored_plot_id: str
):
logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Config not found for plot_id {plot_id_clicked}")
num_plots = len(plot_configs)
error_list_len = 15 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[11] = current_active_action_from_state
error_list[12] = current_chat_plot_id
error_list[13] = current_chat_histories
error_list[14] = current_explored_plot_id
return error_list
clicked_plot_label = clicked_plot_config["label"]
clicked_plot_section = clicked_plot_config["section"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
action_col_visible_update = gr.update(visible=False)
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
formula_close_hint_visible_update = gr.update(visible=False)
chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
generated_panel_vis_updates = []
generated_bomb_btn_updates = []
generated_formula_btn_updates = []
generated_explore_btn_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
for _ in plot_configs:
generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON))
generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))
if current_explored_plot_id:
explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
explored_sec = explored_cfg["section"] if explored_cfg else None
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
for cfg in plot_configs:
is_exp = (cfg["id"] == current_explored_plot_id)
generated_panel_vis_updates.append(gr.update(visible=is_exp))
generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
else:
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
generated_panel_vis_updates.append(gr.update(visible=True))
generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
if action_type == "insights": new_current_chat_plot_id = None
else: # Toggling ON a new action or switching actions
new_active_action_state_to_set = hypothetical_new_active_state
action_col_visible_update = gr.update(visible=True)
new_explored_plot_id_to_set = None
logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
for cfg in plot_configs:
generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked)))
generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
for cfg_btn in plot_configs:
is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON))
generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
if action_type == "insights":
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
history = current_chat_histories.get(plot_id_clicked, [])
summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
if not history:
prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
llm_hist = [{"role": "user", "content": prompt}]
resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary) # This is your existing LLM call
history = [{"role": "assistant", "content": resp}]
updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
else:
_, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
chatbot_content_update = gr.update(value=history)
s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_close_hint_visible_update = gr.update(visible=True)
f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
if f_key and f_key in PLOT_FORMULAS:
f_data = PLOT_FORMULAS[f_key]
f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
else: f_text += "(No detailed formula information found.)"
formula_content_update = gr.update(value=f_text)
new_current_chat_plot_id = None
final_updates = [
action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update, insights_suggestions_row_visible_update,
s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update,
formula_close_hint_visible_update, # Corrected from formula_close_hint_md
new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories,
new_explored_plot_id_to_set
]
final_updates.extend(generated_panel_vis_updates)
final_updates.extend(generated_bomb_btn_updates)
final_updates.extend(generated_formula_btn_updates)
final_updates.extend(generated_explore_btn_updates)
final_updates.extend(section_title_vis_updates)
logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
return final_updates
async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
if not current_plot_id or not user_message.strip():
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
lbl = cfg["label"] if cfg else "Selected Plot"
summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
hist_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(hist_for_plot, list): hist_for_plot = []
hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
yield hist, gr.update(value=""), chat_histories
resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary) # Existing LLM
hist.append({"role": "assistant", "content": resp})
updated_chat_histories = {**chat_histories, current_plot_id: hist}
yield hist, "", updated_chat_histories
async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
yield update_chunk
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
# This function remains synchronous as per original
logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
num_plots = len(plot_configs)
if not plot_ui_objects:
logging.error("plot_ui_objects not populated for handle_explore_click.")
error_list_len = 4 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[0] = current_explored_plot_id_from_state
error_list[2] = current_active_panel_action_state
return error_list
new_explored_id_to_set = None
is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)
action_col_upd = gr.update()
new_active_panel_state_upd = current_active_panel_action_state
formula_hint_upd = gr.update(visible=False)
panel_vis_updates = []
explore_btns_updates = []
bomb_btns_updates = []
formula_btns_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
if is_toggling_off_explore:
new_explored_id_to_set = None
logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
panel_vis_updates.append(gr.update(visible=True))
explore_btns_updates.append(gr.update(value=EXPLORE_ICON))
bomb_btns_updates.append(gr.update())
formula_btns_updates.append(gr.update())
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
for cfg in plot_configs:
is_target = (cfg["id"] == new_explored_id_to_set)
panel_vis_updates.append(gr.update(visible=is_target))
explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
if current_active_panel_action_state:
logging.info("Closing active insight/formula panel due to explore click.")
action_col_upd = gr.update(visible=False)
new_active_panel_state_upd = None
formula_hint_upd = gr.update(visible=False)
# Reset bomb and formula buttons to non-active
bomb_btns_updates = [gr.update(value=BOMB_ICON) for _ in plot_configs]
formula_btns_updates = [gr.update(value=FORMULA_ICON) for _ in plot_configs]
else: # No active panel, so no need to reset bomb/formula buttons beyond what explore does
bomb_btns_updates = [gr.update() for _ in plot_configs]
formula_btns_updates = [gr.update() for _ in plot_configs]
final_explore_updates = [
new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd
]
final_explore_updates.extend(panel_vis_updates)
final_explore_updates.extend(explore_btns_updates)
final_explore_updates.extend(bomb_btns_updates)
final_explore_updates.extend(formula_btns_updates)
final_explore_updates.extend(section_title_vis_updates)
logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
return final_explore_updates
_base_action_panel_ui_outputs = [
global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui,
insights_chat_input_ui, insights_suggestions_row_ui,
insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui,
formula_close_hint_md
]
_action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
_explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
explore_outputs_list = _explore_base_outputs
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id):
return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
if ui_obj.get("bomb_button"):
ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
if ui_obj.get("formula_button"):
ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
if ui_obj.get("explore_button"):
ui_obj["explore_button"].click(
fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val),
inputs=explore_click_inputs,
outputs=explore_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
# --- NEW TABS FOR AGENTIC PIPELINE RESULTS ---
with gr.TabItem("5️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
gr.Markdown("This report is generated by an AI agent based on the selected date range. Please review critically.")
agentic_report_display_md = gr.Markdown("Apply a date filter in Tab 2 to generate the report.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
with gr.TabItem("6️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks")
gr.Markdown("Based on the analysis, the AI agent has proposed the following Objectives and Key Results (OKRs), along with actionable tasks. Select Key Results you want to focus on to see detailed tasks.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Suggested Key Results")
key_results_cbg = gr.CheckboxGroup(
label="Select Key Results",
choices=[], # Will be populated dynamically
value=[],
interactive=True
)
with gr.Column(scale=3):
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
okr_detail_display_md = gr.Markdown("Select Key Results from the left to see details, or apply a date filter in Tab 2 to generate OKRs.")
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
"""
Updates the Markdown display for OKRs based on selected Key Results.
If no KRs are selected, it might show all, or a prompt.
"""
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
return gr.update(value="No orchestration data available or agentic modules not loaded. Apply a date filter first.")
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
return gr.update(value="No OKRs found in the orchestration results.")
okrs_list = actionable_okrs_dict["okrs"]
# Create a mapping from unique_kr_id to (okr_idx, kr_idx)
kr_id_to_indices = {
kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index'])
for kr_info in all_krs_for_selection
}
# Determine which KRs are selected for each OKR
# okr_idx -> list of selected kr_indices for that OKR
selected_krs_by_okr_idx = defaultdict(list)
if selected_kr_unique_ids: # If specific KRs are selected
for kr_unique_id in selected_kr_unique_ids:
if kr_unique_id in kr_id_to_indices:
okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
output_md_parts = []
if not okrs_list:
output_md_parts.append("No OKRs were generated.")
else:
for okr_idx, okr_data in enumerate(okrs_list):
# If specific KRs were selected, only display OKRs that have at least one selected KR,
# or if no KRs are selected at all, display all OKRs with all their KRs.
accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx) # This will be None if no KRs from this OKR are selected
if selected_kr_unique_ids: # User has made a selection
if accepted_indices_for_this_okr is not None : # Only show this OKR if some of its KRs are selected
output_md_parts.append(format_single_okr_for_display(
okr_data,
accepted_kr_indices=accepted_indices_for_this_okr,
okr_main_index=okr_idx
))
else: # No KRs selected by user, show all OKRs with all their KRs
output_md_parts.append(format_single_okr_for_display(
okr_data,
accepted_kr_indices=None, # None means show all KRs for this OKR
okr_main_index=okr_idx
))
if not output_md_parts and selected_kr_unique_ids: # User made selection, but no matching OKRs displayed
final_md = "No OKRs match the current Key Result selection, or the selected Key Results do not have detailed tasks."
elif not output_md_parts and not selected_kr_unique_ids: # No user selection and no OKRs at all
final_md = "No OKRs generated. Please apply a filter in Tab 2."
else:
final_md = "\n\n---\n\n".join(output_md_parts)
return gr.update(value=final_md)
if AGENTIC_MODULES_LOADED:
key_results_cbg.change(
fn=update_okr_display_on_selection,
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
outputs=[okr_detail_display_md]
)
# --- END NEW TABS ---
# --- REFRESH ANALYTICS (NOW ASYNC and includes AGENTIC PIPELINE) ---
async def refresh_all_analytics_ui_elements(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
logging.info("Refreshing all analytics UI elements and resetting actions/chat.")
start_time = time.time()
# 1. Standard Analytics Plot Generation
plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
all_updates = [status_msg]
all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))])
# UI Resets for Analytics Tab Action Panel
all_updates.extend([
gr.update(visible=False), # global_actions_column_ui
gr.update(value=[], visible=False), # insights_chatbot_ui (value & visibility)
gr.update(value="", visible=False), # insights_chat_input_ui (value & visibility)
gr.update(visible=False), # insights_suggestions_row_ui
gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"), # suggestion_btns
gr.update(value="Formula details here.", visible=False), # formula_display_markdown_ui (value & visibility)
gr.update(visible=False) # formula_close_hint_md
])
# State Resets for Analytics Tab
all_updates.extend([
None, # active_panel_action_state
None, # current_chat_plot_id_st
{}, # chat_histories_st (resetting, new insights will be generated if panel opened)
new_summaries # plot_data_for_chatbot_st
])
# Plot button and panel visibility resets for Analytics Tab
for _ in plot_configs:
all_updates.extend([
gr.update(value=BOMB_ICON),
gr.update(value=FORMULA_ICON),
gr.update(value=EXPLORE_ICON),
gr.update(visible=True) # panel_component visibility
])
all_updates.append(None) # explored_plot_id_state reset
all_updates.extend([gr.update(visible=True)] * num_unique_sections) # section_title visibility reset
# 2. Agentic Pipeline Execution
agentic_status_update = "Agentic pipeline processing..."
# Placeholder for agentic UI updates initially
agentic_report_md_update = gr.update(value="Analisi AI in corso...")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
okr_detail_display_md_update = gr.update(value="Dettagli OKR in corso di generazione...")
orchestration_results_update = None
selected_krs_update = []
krs_for_selection_update = []
if AGENTIC_MODULES_LOADED:
try:
logging.info("Starting agentic pipeline...")
orchestration_output = await run_full_analytics_orchestration(
current_token_state_val, date_filter_val, custom_start_val, custom_end_val
)
agentic_status_update = "Agentic pipeline completed."
logging.info(f"Agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
if orchestration_output:
orchestration_results_update = orchestration_output # Store raw results
# Format report for Tab 5
report_str = orchestration_output.get('comprehensive_analysis_report_str')
agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
# Prepare KRs for Tab 6
actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks')
krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs)
krs_for_selection_update = krs_for_ui_selection_list # Store for later use in event handler
kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True)
# Initially display all OKRs in Tab 6
all_okrs_md_parts = []
if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]):
all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
if not all_okrs_md_parts:
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato.")
else:
okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
selected_krs_update = [] # Reset selection
else:
agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI.")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI.")
orchestration_results_update = None
selected_krs_update = []
krs_for_selection_update = []
except Exception as e:
logging.error(f"Error during agentic pipeline execution: {e}", exc_info=True)
agentic_status_update = f"Errore pipeline AI: {e}"
agentic_report_md_update = gr.update(value=f"Errore durante la generazione del report AI: {e}")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
okr_detail_display_md_update = gr.update(value=f"Errore durante la generazione degli OKR AI: {e}")
orchestration_results_update = None
selected_krs_update = []
krs_for_selection_update = []
else: # AGENTIC_MODULES_LOADED is False
agentic_status_update = "Moduli AI non caricati. Pipeline saltata."
agentic_report_md_update = gr.update(value="Moduli AI non caricati. Report non disponibile.")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False, visible=False) # Hide if not loaded
okr_detail_display_md_update = gr.update(value="Moduli AI non caricati. OKR non disponibili.", visible=False) # Hide
orchestration_results_update = None
selected_krs_update = []
krs_for_selection_update = []
# Append agentic pipeline updates to all_updates
# Order must match apply_filter_and_sync_outputs_list extension
all_updates.extend([
agentic_report_md_update, # For agentic_report_display_md
key_results_cbg_update, # For key_results_cbg
okr_detail_display_md_update, # For okr_detail_display_md
orchestration_results_update, # For orchestration_raw_results_st
selected_krs_update, # For selected_key_result_ids_st
krs_for_selection_update # For key_results_for_selection_st
])
end_time = time.time()
logging.info(f"Analytics and Agentic refresh took {end_time - start_time:.2f} seconds.")
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh. Expected {15 + 5*len(plot_configs) + num_unique_sections + 6}.")
# The status_msg from plot_gen_results is the first item. We can augment it.
all_updates[0] = f"{status_msg} | {agentic_status_update}"
return tuple(all_updates) # Return as tuple for Gradio
# Define the list of outputs for apply_filter_btn and sync.then
apply_filter_and_sync_outputs_list = [analytics_status_md]
apply_filter_and_sync_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs])
_ui_resets_for_filter = [
global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_close_hint_md
]
apply_filter_and_sync_outputs_list.extend(_ui_resets_for_filter)
_state_resets_for_filter = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
apply_filter_and_sync_outputs_list.extend(_state_resets_for_filter)
for pc in plot_configs:
pid = pc["id"]
apply_filter_and_sync_outputs_list.extend([
plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()),
plot_ui_objects.get(pid, {}).get("formula_button", gr.update()),
plot_ui_objects.get(pid, {}).get("explore_button", gr.update()),
plot_ui_objects.get(pid, {}).get("panel_component", gr.update())
])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
apply_filter_and_sync_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
# --- Add new outputs for agentic tabs and states ---
apply_filter_and_sync_outputs_list.extend([
agentic_report_display_md, # Tab 5 UI
key_results_cbg, # Tab 6 UI (CheckboxGroup)
okr_detail_display_md, # Tab 6 UI (Markdown display)
orchestration_raw_results_st, # New State
selected_key_result_ids_st, # New State
key_results_for_selection_st # New State
])
# --- End new outputs ---
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements, # Now async
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list, show_progress="full"
)
# --- Sync Events (at the end of the app's 'with gr.Blocks()' context) ---
sync_event_part1 = sync_data_btn.click(fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full")
sync_event_part2 = sync_event_part1.then(fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False)
sync_event_part3 = sync_event_part2.then(fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements, # Now async
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
if not AGENTIC_MODULES_LOADED:
logging.warning("CRITICAL: Agentic pipeline modules (run_agentic_pipeline.py, insights_ui_generator.py) failed to load. Tabs 5 and 6 will be non-functional.")
if not os.environ.get("GEMINI_API_KEY") and AGENTIC_MODULES_LOADED:
logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 5 e 6 potrebbe non funzionare.")
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError: logging.warning("Matplotlib non trovato.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|