Spaces:
Runtime error
Runtime error
import os | |
import threading | |
class CodeDebuggerWrapper: | |
""" | |
Simple wrapper that loads the same HF model and exposes debug(code: str) -> str | |
This is used by app.py (Gradio). | |
""" | |
def __init__(self, model_name: str = "Girinath11/aiml_code_debug_model"): | |
self.model_name = model_name | |
self._lock = threading.Lock() | |
self.tokenizer = None | |
self.model = None | |
self.max_new_tokens = int(os.environ.get("MAX_NEW_TOKENS", "256")) | |
self._ensure_model() | |
def _ensure_model(self): | |
# allow skipping in environments where you don't want to download weights | |
skip = os.environ.get("SKIP_MODEL_LOAD", "0") == "1" | |
if skip: | |
print("SKIP_MODEL_LOAD=1 -> not loading model.") | |
return | |
if self.model is None or self.tokenizer is None: | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
with self._lock: | |
if self.model is None or self.tokenizer is None: | |
print(f"Loading model {self.model_name} ...") | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name) | |
print("Model loaded.") | |
def debug(self, code: str) -> str: | |
if self.model is None or self.tokenizer is None: | |
return "Model not loaded. Set SKIP_MODEL_LOAD=0 and ensure HF token is available if model is private." | |
inputs = self.tokenizer(code, return_tensors="pt", padding=True, truncation=True) | |
outputs = self.model.generate(**inputs, max_new_tokens=self.max_new_tokens) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |