File size: 1,743 Bytes
87ce049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
import threading

class CodeDebuggerWrapper:
    """
    Simple wrapper that loads the same HF model and exposes debug(code: str) -> str
    This is used by app.py (Gradio).
    """
    def __init__(self, model_name: str = "Girinath11/aiml_code_debug_model"):
        self.model_name = model_name
        self._lock = threading.Lock()
        self.tokenizer = None
        self.model = None
        self.max_new_tokens = int(os.environ.get("MAX_NEW_TOKENS", "256"))
        self._ensure_model()

    def _ensure_model(self):
        # allow skipping in environments where you don't want to download weights
        skip = os.environ.get("SKIP_MODEL_LOAD", "0") == "1"
        if skip:
            print("SKIP_MODEL_LOAD=1 -> not loading model.")
            return

        if self.model is None or self.tokenizer is None:
            from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
            with self._lock:
                if self.model is None or self.tokenizer is None:
                    print(f"Loading model {self.model_name} ...")
                    self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
                    self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
                    print("Model loaded.")

    def debug(self, code: str) -> str:
        if self.model is None or self.tokenizer is None:
            return "Model not loaded. Set SKIP_MODEL_LOAD=0 and ensure HF token is available if model is private."
        inputs = self.tokenizer(code, return_tensors="pt", padding=True, truncation=True)
        outputs = self.model.generate(**inputs, max_new_tokens=self.max_new_tokens)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)