Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import logging | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, OpenAIServerModel | |
from pathlib import Path | |
from llama_index.core import ( | |
VectorStoreIndex, | |
SimpleDirectoryReader, | |
Settings, | |
set_global_handler | |
) | |
from llama_index.llms.openai import OpenAI | |
from openai import OpenAI as OpenAIClient | |
#per i file multimediali | |
import base64 | |
import json | |
from PIL import Image | |
from io import BytesIO | |
NUMERO_DOMANDE_TOTALE = 1 | |
set_global_handler("simple") # imposta un handler semplice per il logging | |
logging.getLogger().setLevel(logging.DEBUG) # imposta il livello di log a DEBUG | |
class BasicAgent: | |
def __init__(self): | |
print("coso Initializing LlamaIndex-based agent...") | |
# Leggi la chiave OpenAI dall'ambiente | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
if not openai_api_key: | |
raise ValueError("OPENAI_API_KEY not set!") | |
# Crea un'istanza di OpenAI | |
llm = OpenAI( | |
model="gpt-4o-mini", | |
temperature=0, | |
api_key=openai_api_key, | |
verbose = True | |
) | |
# Imposta le impostazioni tramite Settings | |
Settings.llm=llm | |
self.client = OpenAIClient(api_key=openai_api_key) | |
# Carica i documenti dalla cartella 'data' | |
self.documents = SimpleDirectoryReader("data").load_data() | |
# Crea l'indice con la configurazione | |
self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings) | |
# Prepara il query engine | |
self.query_engine = self.index.as_query_engine() | |
print("coso Agent ready.") | |
''' | |
def __call__(self, question: str) -> str: | |
print(f"Received question: {question[:50]}...") | |
response = self.query_engine.query(question) | |
# Stampa ragionamento interno | |
print("Query response object:", response) | |
print("Response text:", str(response)) | |
return str(response) | |
''' | |
def __call__(self, question: str) -> str: | |
print_coso(f"Received question: {question[:100]}") | |
# Prova a decodificare JSON | |
try: | |
q_data = json.loads(question) | |
except json.JSONDecodeError: | |
q_data = {"question": question} | |
text = q_data.get("question", "") | |
file_info = q_data.get("file_name", "") | |
print_coso(f"q_data: {q_data}") | |
print_coso(f"text: {text}") | |
print_coso(f"file_info: {file_info}") | |
# Se è presente un file, gestiscilo | |
if file_info: | |
file_name = file_info.get("name", "") | |
file_data = file_info.get("data", "") | |
if file_name.endswith((".png", ".jpg", ".jpeg")): | |
print("coso Image file detected, processing with GPT-4o") | |
image = self._load_image(file_data) | |
response = self._ask_gpt4o_with_image(image, text) | |
return response | |
elif file_name.endswith(".wav") or file_name.endswith(".mp3"): | |
print("coso Audio file detected, processing with Whisper") | |
audio_bytes = self._load_bytes(file_data) | |
transcription = self._transcribe_audio(audio_bytes) | |
return self._ask_gpt4o(transcription) | |
elif file_name.endswith(".txt"): | |
print("coso Text file detected") | |
text_content = self._load_text(file_data) | |
return self._ask_gpt4o(text_content) | |
print("coso nessun file allegato") | |
# Altrimenti gestisci solo testo | |
return self._ask_gpt4o(text) | |
def _ask_gpt4o(self, text: str) -> str: | |
messages = [{"role": "user", "content": text}] | |
response = self.client.chat.completions.create(model="gpt-4o-mini", messages=messages) | |
return response.choices[0].message.content.strip() | |
def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
buffered.seek(0) | |
image_bytes = buffered.read() | |
response = self.client.chat.completions.create( | |
model="gpt-4o", #ATTENZIONE QUI MODELLO NON MINI | |
messages=[{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": question}, | |
{"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}} | |
] | |
}] | |
) | |
return response.choices[0].message.content.strip() | |
def _transcribe_audio(self, audio_bytes: bytes) -> str: | |
audio_file = BytesIO(audio_bytes) | |
transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_file) | |
return transcription.text.strip() | |
def _load_image(self, data: str) -> Image.Image: | |
return Image.open(BytesIO(base64.b64decode(data))) | |
def _load_bytes(self, data: str) -> bytes: | |
return base64.b64decode(data) | |
def _load_text(self, data: str) -> str: | |
return base64.b64decode(data).decode("utf-8") | |
def create_mock_questions(): | |
#with open("data/A_photograph_captures_a_domestic_kitchen_scene_dur.png", "rb") as img_file: | |
# img_bytes = img_file.read() | |
# img_base64 = base64.b64encode(img_bytes).decode("utf-8") | |
return [{ | |
"task_id":"cca530fc-4052-43b2-b130-b30968d8aa44", | |
"question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.", | |
"Level":"1", | |
"file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png" | |
}] | |
def print_coso(scritta: str): | |
return f"coso {scritta}" | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
##Roba per la valutazione | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
''' | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
total_questions = response.json() | |
print("\n\n") | |
print(f"total_questions: {total_questions}") | |
print("\n\n") | |
''' | |
total_questions = create_mock_questions() | |
print_coso(f"total_questions: {total_questions}") | |
questions_data = total_questions[:NUMERO_DOMANDE_TOTALE] | |
print_coso(f"questions_data: {questions_data}") | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
print(f"coso final_status: {final_status} - results_df: {results_df}") | |
return final_status, results_df | |
#return "mock1", "mock2" | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |