Spaces:
Running
Running
File size: 14,630 Bytes
7d2cb2c 85e3677 d4a7cab b34cb70 d431a9a e8de13a 2e8ab30 2fd1ae7 85e3677 2c4a6e2 66ad971 c33b822 ca52d3a fbe5fbd 93997a6 013ac54 7d2cb2c f0355f6 d0c9345 ec894d6 f227f5c c044f85 93997a6 c044f85 f227f5c c35143d 0581a0a 0a8cf3c d99a6b9 f227f5c d0c9345 f227f5c a62509e f227f5c d0c9345 ec894d6 f0355f6 f227f5c f0355f6 93997a6 f0355f6 82e8a8c b34cb70 ec894d6 fc798ed ec894d6 21166c5 ec894d6 fc798ed 02426fb ec894d6 c2f68e0 ec894d6 02426fb ec894d6 db6e4d8 ec894d6 b34cb70 ec894d6 b34cb70 ec894d6 b34cb70 ec894d6 b34cb70 f0355f6 f2cec54 55b3602 f2cec54 ec894d6 fc798ed ec894d6 af0a809 d4157c3 7d2cb2c 55b3602 ad42efc 55b3602 f2cec54 fc798ed 93997a6 fc798ed 7d2cb2c 55ef9b4 fc798ed 7d2cb2c fc798ed 7d2cb2c fc798ed 55ef9b4 7d2cb2c 7885ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import logging
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, OpenAIServerModel
from pathlib import Path
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Settings,
set_global_handler
)
from llama_index.llms.openai import OpenAI
from openai import OpenAI as OpenAIClient
#per i file multimediali
import base64
import json
from PIL import Image
from io import BytesIO
NUMERO_DOMANDE_TOTALE = 1
set_global_handler("simple") # imposta un handler semplice per il logging
logging.getLogger().setLevel(logging.DEBUG) # imposta il livello di log a DEBUG
class BasicAgent:
def __init__(self):
print("coso Initializing LlamaIndex-based agent...")
# Leggi la chiave OpenAI dall'ambiente
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY not set!")
# Crea un'istanza di OpenAI
llm = OpenAI(
model="gpt-4o-mini",
temperature=0,
api_key=openai_api_key,
verbose = True
)
# Imposta le impostazioni tramite Settings
Settings.llm=llm
self.client = OpenAIClient(api_key=openai_api_key)
# Carica i documenti dalla cartella 'data'
self.documents = SimpleDirectoryReader("data").load_data()
# Crea l'indice con la configurazione
self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings)
# Prepara il query engine
self.query_engine = self.index.as_query_engine()
print("coso Agent ready.")
'''
def __call__(self, question: str) -> str:
print(f"Received question: {question[:50]}...")
response = self.query_engine.query(question)
# Stampa ragionamento interno
print("Query response object:", response)
print("Response text:", str(response))
return str(response)
'''
def __call__(self, question: str) -> str:
print_coso(f"Received question: {question[:100]}")
# Prova a decodificare JSON
try:
q_data = json.loads(question)
except json.JSONDecodeError:
q_data = {"question": question}
text = q_data.get("question", "")
file_info = q_data.get("file_name", "")
print_coso(f"q_data: {q_data}")
print_coso(f"text: {text}")
print_coso(f"file_info: {file_info}")
# Se è presente un file, gestiscilo
if file_info:
file_name = file_info.get("name", "")
file_data = file_info.get("data", "")
if file_name.endswith((".png", ".jpg", ".jpeg")):
print("coso Image file detected, processing with GPT-4o")
image = self._load_image(file_data)
response = self._ask_gpt4o_with_image(image, text)
return response
elif file_name.endswith(".wav") or file_name.endswith(".mp3"):
print("coso Audio file detected, processing with Whisper")
audio_bytes = self._load_bytes(file_data)
transcription = self._transcribe_audio(audio_bytes)
return self._ask_gpt4o(transcription)
elif file_name.endswith(".txt"):
print("coso Text file detected")
text_content = self._load_text(file_data)
return self._ask_gpt4o(text_content)
print("coso nessun file allegato")
# Altrimenti gestisci solo testo
return self._ask_gpt4o(text)
def _ask_gpt4o(self, text: str) -> str:
messages = [{"role": "user", "content": text}]
response = self.client.chat.completions.create(model="gpt-4o-mini", messages=messages)
return response.choices[0].message.content.strip()
def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
buffered.seek(0)
image_bytes = buffered.read()
response = self.client.chat.completions.create(
model="gpt-4o", #ATTENZIONE QUI MODELLO NON MINI
messages=[{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
]
}]
)
return response.choices[0].message.content.strip()
def _transcribe_audio(self, audio_bytes: bytes) -> str:
audio_file = BytesIO(audio_bytes)
transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_file)
return transcription.text.strip()
def _load_image(self, data: str) -> Image.Image:
return Image.open(BytesIO(base64.b64decode(data)))
def _load_bytes(self, data: str) -> bytes:
return base64.b64decode(data)
def _load_text(self, data: str) -> str:
return base64.b64decode(data).decode("utf-8")
def create_mock_questions():
#with open("data/A_photograph_captures_a_domestic_kitchen_scene_dur.png", "rb") as img_file:
# img_bytes = img_file.read()
# img_base64 = base64.b64encode(img_bytes).decode("utf-8")
return [{
"task_id":"cca530fc-4052-43b2-b130-b30968d8aa44",
"question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.",
"Level":"1",
"file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png"
}]
def print_coso(scritta: str):
return f"coso {scritta}"
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
##Roba per la valutazione
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
'''
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
total_questions = response.json()
print("\n\n")
print(f"total_questions: {total_questions}")
print("\n\n")
'''
total_questions = create_mock_questions()
print_coso(f"total_questions: {total_questions}")
questions_data = total_questions[:NUMERO_DOMANDE_TOTALE]
print_coso(f"questions_data: {questions_data}")
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
print(f"coso final_status: {final_status} - results_df: {results_df}")
return final_status, results_df
#return "mock1", "mock2"
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|