File size: 14,630 Bytes
7d2cb2c
 
 
 
 
85e3677
d4a7cab
b34cb70
d431a9a
e8de13a
2e8ab30
2fd1ae7
85e3677
 
2c4a6e2
66ad971
c33b822
ca52d3a
fbe5fbd
 
 
 
 
 
93997a6
 
013ac54
 
7d2cb2c
f0355f6
d0c9345
ec894d6
f227f5c
 
 
 
 
 
 
 
c044f85
 
93997a6
 
c044f85
f227f5c
c35143d
0581a0a
0a8cf3c
d99a6b9
 
f227f5c
 
d0c9345
f227f5c
 
a62509e
f227f5c
 
d0c9345
ec894d6
 
f0355f6
f227f5c
f0355f6
93997a6
 
 
 
 
f0355f6
82e8a8c
b34cb70
 
ec894d6
fc798ed
ec894d6
 
 
 
 
 
 
 
21166c5
ec894d6
fc798ed
 
 
02426fb
ec894d6
 
 
c2f68e0
ec894d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02426fb
 
ec894d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6e4d8
ec894d6
 
 
 
 
 
 
 
 
b34cb70
ec894d6
 
 
 
b34cb70
ec894d6
 
b34cb70
ec894d6
 
 
 
 
b34cb70
 
 
 
f0355f6
 
f2cec54
55b3602
 
 
 
 
 
 
 
 
f2cec54
ec894d6
 
 
fc798ed
 
ec894d6
 
 
af0a809
 
 
 
d4157c3
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b3602
ad42efc
 
 
 
 
 
55b3602
f2cec54
fc798ed
93997a6
fc798ed
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef9b4
 
fc798ed
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
fc798ed
 
7d2cb2c
fc798ed
 
55ef9b4
 
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7885ebe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import logging
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, OpenAIServerModel
from pathlib import Path

from llama_index.core import (
    VectorStoreIndex,
    SimpleDirectoryReader,
    Settings,
    set_global_handler
)
from llama_index.llms.openai import OpenAI
from openai import OpenAI as OpenAIClient

#per i file multimediali
import base64
import json
from PIL import Image
from io import BytesIO

NUMERO_DOMANDE_TOTALE = 1

set_global_handler("simple")  # imposta un handler semplice per il logging
logging.getLogger().setLevel(logging.DEBUG)  # imposta il livello di log a DEBUG

class BasicAgent:
    def __init__(self):
        print("coso Initializing LlamaIndex-based agent...")

        # Leggi la chiave OpenAI dall'ambiente
        openai_api_key = os.getenv("OPENAI_API_KEY")
        if not openai_api_key:
            raise ValueError("OPENAI_API_KEY not set!")

        # Crea un'istanza di OpenAI
        llm = OpenAI(
            model="gpt-4o-mini",
            temperature=0,
            api_key=openai_api_key,
            verbose = True
        )

        # Imposta le impostazioni tramite Settings
        Settings.llm=llm
        
        self.client = OpenAIClient(api_key=openai_api_key)
        

        # Carica i documenti dalla cartella 'data'
        self.documents = SimpleDirectoryReader("data").load_data()

        # Crea l'indice con la configurazione
        self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings)

        # Prepara il query engine
        self.query_engine = self.index.as_query_engine()
        print("coso Agent ready.")
    '''
    def __call__(self, question: str) -> str:
        print(f"Received question: {question[:50]}...")
        response = self.query_engine.query(question)

        # Stampa ragionamento interno
        print("Query response object:", response)
        print("Response text:", str(response))
        
        return str(response)
    '''


    def __call__(self, question: str) -> str:
        print_coso(f"Received question: {question[:100]}")

        # Prova a decodificare JSON
        try:
            q_data = json.loads(question)
        except json.JSONDecodeError:
            q_data = {"question": question}

        text = q_data.get("question", "")
        file_info = q_data.get("file_name", "")

        print_coso(f"q_data: {q_data}")
        print_coso(f"text: {text}")
        print_coso(f"file_info: {file_info}")

        # Se è presente un file, gestiscilo
        if file_info:
            file_name = file_info.get("name", "")
            file_data = file_info.get("data", "")

            if file_name.endswith((".png", ".jpg", ".jpeg")):
                print("coso Image file detected, processing with GPT-4o")
                image = self._load_image(file_data)
                response = self._ask_gpt4o_with_image(image, text)
                return response

            elif file_name.endswith(".wav") or file_name.endswith(".mp3"):
                print("coso Audio file detected, processing with Whisper")
                audio_bytes = self._load_bytes(file_data)
                transcription = self._transcribe_audio(audio_bytes)
                return self._ask_gpt4o(transcription)

            elif file_name.endswith(".txt"):
                print("coso Text file detected")
                text_content = self._load_text(file_data)
                return self._ask_gpt4o(text_content)


        print("coso nessun file allegato")
        # Altrimenti gestisci solo testo
        return self._ask_gpt4o(text)

    def _ask_gpt4o(self, text: str) -> str:
        messages = [{"role": "user", "content": text}]
        response = self.client.chat.completions.create(model="gpt-4o-mini", messages=messages)
        return response.choices[0].message.content.strip()

    def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        image_bytes = buffered.read()

        response = self.client.chat.completions.create(
            model="gpt-4o",  #ATTENZIONE QUI MODELLO NON MINI
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": question},
                    {"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
                ]
            }]
        )
        return response.choices[0].message.content.strip()

    def _transcribe_audio(self, audio_bytes: bytes) -> str:
        audio_file = BytesIO(audio_bytes)
        transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_file)
        return transcription.text.strip()

    def _load_image(self, data: str) -> Image.Image:
        return Image.open(BytesIO(base64.b64decode(data)))

    def _load_bytes(self, data: str) -> bytes:
        return base64.b64decode(data)

    def _load_text(self, data: str) -> str:
        return base64.b64decode(data).decode("utf-8")






def create_mock_questions():
    #with open("data/A_photograph_captures_a_domestic_kitchen_scene_dur.png", "rb") as img_file:
    #    img_bytes = img_file.read()
    #    img_base64 = base64.b64encode(img_bytes).decode("utf-8")

    return [{    
      "task_id":"cca530fc-4052-43b2-b130-b30968d8aa44",
      "question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.",
      "Level":"1",
      "file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png"
    }]



def print_coso(scritta: str):
    return f"coso {scritta}"
    


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

##Roba per la valutazione        

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        '''
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        total_questions = response.json()
        print("\n\n")
        print(f"total_questions: {total_questions}")
        print("\n\n")
        '''
        total_questions = create_mock_questions()
        print_coso(f"total_questions: {total_questions}")
        questions_data = total_questions[:NUMERO_DOMANDE_TOTALE]
        print_coso(f"questions_data: {questions_data}")
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:


        
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)

        print(f"coso final_status: {final_status} - results_df: {results_df}")
        return final_status, results_df
        
        #return "mock1", "mock2"

        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)