Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,20 +4,7 @@ import requests
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
-
|
8 |
-
# --- Constants ---
|
9 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
-
|
11 |
-
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -194,70 +181,38 @@ if __name__ == "__main__":
|
|
194 |
demo.launch(debug=True, share=False)
|
195 |
|
196 |
|
197 |
-
'''
|
198 |
-
import gradio as gr
|
199 |
-
from huggingface_hub import InferenceClient
|
200 |
-
|
201 |
-
"""
|
202 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
203 |
-
"""
|
204 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
205 |
-
|
206 |
-
|
207 |
-
def respond(
|
208 |
-
message,
|
209 |
-
history: list[tuple[str, str]],
|
210 |
-
system_message,
|
211 |
-
max_tokens,
|
212 |
-
temperature,
|
213 |
-
top_p,
|
214 |
-
):
|
215 |
-
messages = [{"role": "system", "content": system_message}]
|
216 |
-
|
217 |
-
for val in history:
|
218 |
-
if val[0]:
|
219 |
-
messages.append({"role": "user", "content": val[0]})
|
220 |
-
if val[1]:
|
221 |
-
messages.append({"role": "assistant", "content": val[1]})
|
222 |
-
|
223 |
-
messages.append({"role": "user", "content": message})
|
224 |
-
|
225 |
-
response = ""
|
226 |
-
|
227 |
-
for message in client.chat_completion(
|
228 |
-
messages,
|
229 |
-
max_tokens=max_tokens,
|
230 |
-
stream=True,
|
231 |
-
temperature=temperature,
|
232 |
-
top_p=top_p,
|
233 |
-
):
|
234 |
-
token = message.choices[0].delta.content
|
235 |
-
|
236 |
-
response += token
|
237 |
-
yield response
|
238 |
-
|
239 |
-
|
240 |
-
"""
|
241 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
242 |
-
"""
|
243 |
-
demo = gr.ChatInterface(
|
244 |
-
respond,
|
245 |
-
additional_inputs=[
|
246 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
247 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
248 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
249 |
-
gr.Slider(
|
250 |
-
minimum=0.1,
|
251 |
-
maximum=1.0,
|
252 |
-
value=0.95,
|
253 |
-
step=0.05,
|
254 |
-
label="Top-p (nucleus sampling)",
|
255 |
-
),
|
256 |
-
],
|
257 |
-
)
|
258 |
|
259 |
|
260 |
-
|
261 |
-
|
|
|
262 |
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
+
##Roba per la valutazione
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
10 |
"""
|
|
|
181 |
demo.launch(debug=True, share=False)
|
182 |
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
|
186 |
+
# (Keep Constants as is)
|
187 |
+
# --- Constants ---
|
188 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
189 |
|
190 |
+
# --- Basic Agent Definition ---
|
191 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
192 |
+
class BasicAgent:
|
193 |
+
print("Initializing LlamaIndex-based agent...")
|
194 |
+
|
195 |
+
# Imposta l'LLM (puoi usare anche altri modelli via HuggingFace o OpenRouter)
|
196 |
+
self.llm = HfApiModel()
|
197 |
+
|
198 |
+
#OpenAI(model="gpt-3.5-turbo", temperature=0)
|
199 |
+
|
200 |
+
# Crea un ServiceContext con il tuo LLM
|
201 |
+
self.service_context = ServiceContext.from_defaults(llm=self.llm)
|
202 |
+
|
203 |
+
# Carica i documenti dalla directory "data/"
|
204 |
+
self.documents = SimpleDirectoryReader("data").load_data()
|
205 |
+
|
206 |
+
# Crea un indice vettoriale
|
207 |
+
self.index = VectorStoreIndex.from_documents(
|
208 |
+
self.documents, service_context=self.service_context
|
209 |
+
)
|
210 |
+
|
211 |
+
# Crea il query engine
|
212 |
+
self.query_engine = self.index.as_query_engine()
|
213 |
+
|
214 |
+
def __call__(self, question: str) -> str:
|
215 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
216 |
+
response = self.query_engine.query(question)
|
217 |
+
print(f"Agent returning response: {response}")
|
218 |
+
return str(response)
|