File size: 34,231 Bytes
7d2cb2c
 
 
 
 
5b9a774
85e3677
b34cb70
5b4600f
d2d5f7f
d431a9a
e8de13a
2e8ab30
2fd1ae7
85e3677
 
2c4a6e2
c47a2b5
8a2ddfa
ce9fd78
 
c3e4281
dfc7a97
ca52d3a
fbe5fbd
 
 
 
 
55ff71e
 
425bd95
fbe5fbd
93997a6
013ac54
 
7d2cb2c
f0355f6
d0c9345
4a510d9
 
156a4dc
4a510d9
 
 
 
 
 
 
 
dfc7a97
4a510d9
 
 
 
 
 
 
4aed0d9
 
 
 
 
 
792231b
 
 
 
 
 
842adf4
4f66704
 
 
 
842adf4
 
37be4a3
 
 
 
 
 
f7ce532
4a510d9
293eece
93a9346
 
 
 
 
 
4a510d9
 
c2f8e16
4a510d9
 
a344527
dfc7a97
a344527
 
4a510d9
 
 
 
 
 
 
 
 
6295f49
4a510d9
b7c7943
4a510d9
b676e6b
b34cb70
 
85986f1
bd9e804
ec894d6
 
 
 
 
 
 
 
b3cdd67
ec894d6
9cca3a1
 
 
02426fb
c2f8e16
01bccaf
ec894d6
109f3ff
 
 
962d9a2
 
1166eef
962d9a2
109f3ff
962d9a2
01bccaf
962d9a2
08e56ad
8749396
481f7d9
cf24738
f4e1e2d
ba6e97c
8749396
 
 
 
 
 
 
 
181888a
8749396
 
962d9a2
1272c35
 
 
4d2ca0e
 
fc2a85b
1272c35
 
 
4d2ca0e
1272c35
d4e5999
 
80942de
d4e5999
 
0b29908
d4e5999
 
 
0396c92
d4e5999
 
 
962d9a2
 
9d5fec9
109f3ff
25ad40c
109f3ff
 
 
ec894d6
109f3ff
 
02426fb
ec894d6
109f3ff
ec894d6
bd9e804
324c741
 
 
bd9e804
 
 
 
 
 
 
 
 
 
ec894d6
 
 
 
 
 
 
 
db6e4d8
09826d1
ec894d6
 
 
 
 
 
 
 
 
b34cb70
eecc65d
9a00c73
074f55e
d4b5ba8
074f55e
 
d4b5ba8
074f55e
5ff8b40
ec894d6
b34cb70
ec894d6
2043dcc
 
 
 
 
 
 
b34cb70
8749396
d6a1c64
 
 
 
 
 
 
 
ec894d6
 
b34cb70
 
 
1166eef
7f4b84d
 
 
 
 
1166eef
7f4b84d
 
 
 
 
b34cb70
1166eef
 
0a65f10
7f4b84d
 
0a65f10
1166eef
7f4b84d
1166eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e56ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272c35
 
 
08e56ad
1272c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4e5999
d7b20d7
8739f2f
 
c5b3d59
 
f81b168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4e5999
c5b3d59
 
 
 
5b9a774
c5b3d59
 
 
 
 
 
 
 
 
 
 
 
 
d4e5999
5b9a774
7bd46eb
5b9a774
 
e308dfe
 
 
 
 
 
 
 
 
 
 
d4e5999
 
 
 
 
 
e308dfe
d4e5999
c5b3d59
 
 
d4e5999
 
08e56ad
01bccaf
1166eef
 
 
01bccaf
f0355f6
df9637c
f2cec54
c3ae3ca
99799cf
 
55b3602
 
 
99799cf
 
5ff8b40
 
c3ae3ca
 
 
179a8d2
c2f8e16
179a8d2
 
 
 
f7ce532
 
 
 
 
 
 
 
d4e5999
1272c35
 
 
 
 
d4e5999
312133f
c2f8e16
b13088a
 
 
 
312133f
c2f8e16
 
 
 
 
df9637c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f8e16
99799cf
ec894d6
 
 
845d9e9
 
 
 
8749396
845d9e9
 
 
 
 
 
5ff8b40
8749396
845d9e9
 
55ff71e
 
 
 
 
 
abcb574
55ff71e
 
 
 
 
 
 
1272c35
4aed0d9
792231b
dfbeab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aed0d9
792231b
842adf4
792231b
4aed0d9
4f66704
 
 
 
 
 
37be4a3
 
 
845d9e9
fc798ed
1445ce8
ec894d6
 
 
af0a809
 
 
 
d4157c3
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5d765
b867a4b
 
 
 
 
 
5d5d765
ad42efc
 
 
b867a4b
fc798ed
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fad52
6c2bfa4
7636aa0
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef9b4
 
a3fad52
7d2cb2c
 
 
09cf714
7d2cb2c
 
 
 
 
 
 
 
 
fc798ed
 
7d2cb2c
a3fad52
55ef9b4
 
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7885ebe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from io import StringIO
import logging
from pathlib import Path
from prompt_settings import verification_of_final_answer, yaml_template, yaml_template2
from duckduckgo_search import DDGS

from llama_index.core import (
    VectorStoreIndex,
    SimpleDirectoryReader,
    Settings,
    set_global_handler
)

from llama_index.core.tools import FunctionTool
from llama_index.agent.openai import OpenAIAgent
from llama_index.llms.openai import OpenAI as LlamaOpenAI

from openai import OpenAI as OpenAIClient

#per i file multimediali
import base64
import json
from PIL import Image
from io import BytesIO
from typing import List
import re
import importlib.metadata


set_global_handler("simple")  # imposta un handler semplice per il logging
logging.getLogger().setLevel(logging.DEBUG)  # imposta il livello di log a DEBUG

class BasicAgent:
    def __init__(self):
        try:
            print("coso Initializing LlamaIndex-based agent...")

            # Leggi la chiave OpenAI dall'ambiente
            openai_api_key = os.getenv("OPENAI_API_KEY")
            if not openai_api_key:
                raise ValueError("OPENAI_API_KEY not set!")
    
            # Imposta il logger
            logging.basicConfig(level=logging.DEBUG)
    
            
    
            # Tool per estrarre ingredienti
            ingredient_tool = FunctionTool.from_defaults(
                name="extract_ingredients",
                fn=extract_ingredients,
                description="Extracts and returns a comma-separated, alphabetized list of ingredients for a pie filling from a transcription string."
            )

            search_tool = FunctionTool.from_defaults(
                name="web_search",
                fn=web_search,
                description="Performs a DuckDuckGo search and returns the top 3 results."
            )

            log_thought_tool = FunctionTool.from_defaults(
                name="log_thought",
                fn=log_thought,
                description="Logs the agent's thought process for debugging purposes."
            )

            sum_list_tool = FunctionTool.from_defaults(
                name="sum_list",
                fn=sum_list,
                description="Takes a list of float numbers and returns their sum."
            )

            final_answer = FunctionTool.from_defaults(
                name="final_answer",
                fn=final_answer_tool,
                description="Returns the final answer to the user as a string."
            )

            
            # Registra il tool
            #Settings.tools = [ingredient_tool]

            llm = LlamaOpenAI(
                model="gpt-4o",
                temperature=0.0,
                api_key=openai_api_key
            )
    
            # Prepara l'agente
            self.agent = OpenAIAgent.from_tools([ingredient_tool, search_tool, log_thought_tool, sum_list_tool], llm=llm, verbose=True)
    
            # Client OpenAI per chiamate esterne (immagini/audio)
           
            self.client = OpenAIClient(api_key=openai_api_key)  # per .chat, .audio, ecc.
            
            Settings.llm = llm
    
            # Carica i documenti
            self.documents = SimpleDirectoryReader("data").load_data()
            self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings)
            self.query_engine = self.index.as_query_engine()
    
            print("coso Agent ready.")


        except Exception as e:
            import traceback
            print_coso(f"Error instantiating agent: {e}")
            traceback.print_exc()



    def __call__(self, question: str, file_info: str = "") -> str:
        print_coso(f"Received question: {question[:100]}")

        # Prova a decodificare JSON
        try:
            q_data = json.loads(question)
        except json.JSONDecodeError:
            q_data = {"question": question}

        text = q_data.get("question", "")
        #file_info = q_data.get("file_name", "")

        print_coso(f"__call__ q_data: {q_data}")
        print_coso(f"__call__ text: {text}")
        print_coso(f"__call__ file_info: {file_info}")

        text = f"{verification_of_final_answer} {yaml_template} {text}"
        
        # Se è presente un file, gestiscilo

        risposta = ""
        
        if file_info.endswith((".png", ".jpg", ".jpeg")):
            print("coso Image file detected, processing with GPT-4o")
            image = get_or_download_image(file_info)
            response = self._ask_gpt4o_with_image(image, text)
            risposta = response

        elif file_info.endswith(".wav") or file_info.endswith(".mp3"):
            print("coso Audio file detected, processing with Whisper")
            audio_bytes = get_or_download_audio(file_info)
            if audio_bytes is not None:
                audio_file = BytesIO(audio_bytes) 
                print_coso(f"in mp3 audio_file: {audio_file}")
                audio_file.name = file_info
                transcription = self._transcribe_audio(audio_file)
                prompt_con_audio = (
                    f"The following is the transcription of an audio file related to the question.\n"
                    f"---\n"
                    f"{transcription}\n"
                    f"---\n"
                    f"Now, based on this transcription, answer the following question:\n"
                    f"{question}"
                )
                risposta = self._ask_gpt4o(prompt_con_audio)
            else:
                risposta = "Error loading audio file"

        elif file_info.endswith(".py"):
            print_coso("Python code file detected")
            code_content = get_or_download_code(file_info)
            print_coso(f"Python code before prompt: {code_content}")
            prompt_python = (
                "The following Python code is attached. Please analyze it and provide the final output of the code; your final answer must be only the final output of the code, don not provide any explanation of presentation of the result.\n\n"
                f"{code_content}\n\n"
                f"Question: {question}"
            )
            risposta = self._ask_gpt4o(prompt_python)

        elif file_info.endswith(".xlsx"):
            print_coso("Excel file detected")
            excel_text = _load_excel_as_text(file_info)
            print_coso(f"Excel before prompt: {excel_text}")
            prompt = (
                "The following is the text extracted from an Excel spreadsheet, the symbol `|` is used to separate each column. \n"
                "Please use it to answer the question that follows:\n\n"
                f"{excel_text}\n\n"
                f"Question: {question}\n"
                "Provide only the final answer. If it is a number, format it with two decimal places if relevant. Unless it is specifically requested, return only the final numeric result, as a plain number with no currency symbol, no commas, and no additional text. For example, write '89706.00', not '$89,706.00'. Do not explain."
            )
            risposta = self._ask_gpt4o(prompt)

        elif file_info.endswith(".txt"):
            print("coso Text file detected")
            text_content = self._load_text(file_info)
            risposta = self._ask_gpt4o(text_content)
        else:
            print_coso("nessun file allegato")
            # Altrimenti gestisci solo testo
            risposta = self._ask_gpt4o(text)

        print_coso(f"risposta: {risposta}")
        return risposta


        
    def _ask_gpt4o(self, text: str) -> str:
        response = self.agent.chat(text)
        print_coso("==== Full Agent Response ====")
        print_coso(response)
        print_coso("=============================")
        return str(response)
        '''
        messages = [{"role": "user", "content": text}]
        response = self.client.chat.completions.create(
            model="gpt-4o-mini",
            temperature=0,
            messages=messages
        )
        return response.choices[0].message.content.strip()
        '''

    def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        image_bytes = buffered.read()

        response = self.client.chat.completions.create(
            model="gpt-4o",  #ATTENZIONE QUI MODELLO NON MINI
            temperature=0,
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": question},
                    {"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
                ]
            }]
        )
        return response.choices[0].message.content.strip()

    def _transcribe_audio(self, audio_bytes: BytesIO) -> str:
        #audio_file = BytesIO(audio_bytes)
        #transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_bytes)
        transcription = self.client.audio.transcriptions.create(
            file=audio_bytes,
            model="whisper-1",
            #api_key=os.getenv(openai_api_key)
        )
        print_coso(f"usato _transcribe_audio: {transcription}")
        return transcription.text.strip()

    def _load_image(self, data: str) -> Image.Image:
        print_coso(f"_load_image: {data}")
        try:
            coso = Image.open(BytesIO(base64.b64decode(data)))
            return coso
        except Exception as e:
            print_coso(f"_load_image error: {e}")
            return None            

    def _load_bytes(self, file_name: str) -> bytes:
        file_path = os.path.join("/data", file_name)
        try:
            with open(file_path, "rb") as f:
                return f.read()
        except Exception as e:
            print_coso(f"Error loading file {file_path}: {e}")
            return None
    
    def _load_text(self, data: str) -> str:
        return base64.b64decode(data).decode("utf-8")



def get_or_download_image(file_name: str) -> Image.Image:
    import os
    import requests
    from PIL import Image
    from io import BytesIO

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")

    if not hf_token:
        print("[ERRORE] HF_TOKEN_READ non trovato. Imposta la variabile d'ambiente HF_TOKEN_READ.")
        return None

    if not os.path.exists(file_path):
        print(f"[INFO] File {file_name} non trovato in /data, lo scarico...")

        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}

        try:
            response = requests.get(url, headers=headers)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)
            print(f"[INFO] Scaricato e salvato in {file_path}")
        except Exception as e:
            print(f"[ERRORE] Impossibile scaricare l'immagine: {e}")
            return None

    try:
        return Image.open(file_path)
    except Exception as e:
        print(f"[ERRORE] Impossibile aprire l'immagine {file_path}: {e}")
        return None


def get_or_download_audio(file_name: str) -> bytes:
    import os
    import requests

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")

    if not hf_token:
        print("[ERRORE] HF_TOKEN_READ non trovato. Imposta la variabile d'ambiente HF_TOKEN_READ.")
        return None

    if not os.path.exists(file_path):
        print(f"[INFO] File {file_name} non trovato in /data, lo scarico...")

        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}

        try:
            response = requests.get(url, headers=headers)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)
            print(f"[INFO] Scaricato e salvato in {file_path}")
        except Exception as e:
            print(f"[ERRORE] Impossibile scaricare il file audio: {e}")
            return None

    try:
        with open(file_path, "rb") as f:
            return f.read()
    except Exception as e:
        print(f"[ERRORE] Impossibile leggere il file audio {file_path}: {e}")
        return None

def get_or_download_code(file_name: str) -> str:
    import os
    import requests

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")

    if not os.path.exists(file_path):
        print(f"[INFO] File {file_name} non trovato. Scarico...")
        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}
        response = requests.get(url, headers=headers)
        response.raise_for_status()
        with open(file_path, "wb") as f:
            f.write(response.content)
        print(f"[INFO] Scaricato in {file_path}")

    with open(file_path, "r") as f:
        return f.read()

def _load_excel_as_text(file_name: str) -> str:
    import pandas as pd
    import os
    import requests

    from io import StringIO

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")
    
    # Scarica il file se non esiste localmente
    if not os.path.exists(file_path):
        print_coso(f"[INFO] File {file_name} non trovato. Scarico...")
        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}
        try:
            response = requests.get(url, headers=headers)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)
            print(f"[INFO] Scaricato e salvato in {file_path}")
        except Exception as e:
            print(f"[ERRORE] Impossibile scaricare il file Excel: {e}")
            return "ERROR: Could not download Excel file."

    try:
        df = pd.read_excel(file_path)
        df = df.applymap(lambda x: f"{x:.2f}" if isinstance(x, float) else x)

        # Costruzione della tabella markdown-style
        header = "| " + " | ".join(df.columns) + " |"
        separator = "| " + " | ".join(["---"] * len(df.columns)) + " |"
        rows = df.astype(str).apply(lambda row: "| " + " | ".join(row) + " |", axis=1).tolist()

        table_text = "\n".join([header, separator] + rows)
        return table_text

    except Exception as e:
        print(f"[ERRORE] Impossibile leggere il file Excel: {e}")
        return "ERROR: Could not read Excel file."

def _load_excel_as_text2(file_name: str) -> str:
    import pandas as pd
    import os
    import requests

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")
    
    # Scarica il file se non esiste localmente
    if not os.path.exists(file_path):
        print_coso(f"[INFO] File {file_name} non trovato. Scarico...")
        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}
        try:
            response = requests.get(url, headers=headers)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)
            print(f"[INFO] Scaricato e salvato in {file_path}")
        except Exception as e:
            print(f"[ERRORE] Impossibile scaricare il file Excel: {e}")
            return "ERROR: Could not download Excel file."

    # Leggi il contenuto
    try:
        #xl = pd.ExcelFile(file_path)
        xl = pd.read_excel(file_path)
        print_coso(f"excel: {xl}")
        #sheets = xl.sheet_names

        xl = xl.applymap(lambda x: f"{x:.2f}" if isinstance(x, float) else x)

        # Esporta in formato CSV con separatore "pipe" per chiarezza (| colonna |)
        csv_buffer = StringIO()
        xl.to_csv(csv_buffer, index=False)
        xl_string = csv_buffer.getvalue()
        csv_buffer.close()
        return xl_string
        
        '''
        all_text = ""
        for sheet in sheets:
            df = xl.parse(sheet)
            all_text += f"\nSheet: {sheet}\n"
            all_text += df.to_string(index=False)
        return all_text
        '''
    except Exception as e:
        print(f"[ERRORE] Impossibile leggere il file Excel: {e}")
        return "ERROR: Could not read Excel file."



    
    '''
    base_url = "https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve"
    commit_hash = "86620fe7a265fdd074ea8d8c8b7a556a1058b0af"
    full_url = f"{base_url}/{commit_hash}/2023/validation/{file_name}"
    '''

DOMANDE_MOCKATE = True
def create_mock_questions():

    '''
    {    
      "task_id":"cca530fc-4052-43b2-b130-b30968d8aa44",
      "question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.",
      "Level":"1",
      "file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png" 
    },

    {'task_id': '8e867cd7-cff9-4e6c-867a-ff5ddc2550be', 
         'question': 'How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.', 
         'Level': '1',
         'file_name': ''
        },
        {'task_id': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3',
         'question': 'Hi, I\'m making a pie but I could use some help with my shopping list. I have everything I need for the crust, but I\'m not sure about the filling. I got the recipe from my friend Aditi, but she left it as a voice memo and the speaker on my phone is buzzing so I can\'t quite make out what she\'s saying. Could you please listen to the recipe and list all of the ingredients that my friend described? I only want the ingredients for the filling, as I have everything I need to make my favorite pie crust. I\'ve attached the recipe as Strawberry pie.mp3.\n\nIn your response, please only list the ingredients, not any measurements. So if the recipe calls for "a pinch of salt" or "two cups of ripe strawberries" the ingredients on the list would be "salt" and "ripe strawberries".\n\nPlease format your response as a comma separated list of ingredients. Also, please alphabetize the ingredients.', 
         'Level': '1', 
         'file_name': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3'
        }


         {
            "task_id": "5a0c1adf-205e-4841-a666-7c3ef95def9d",
            "question": "What is the first name of the only Malko Competition recipient from the 20th Century (after 1977) whose nationality on record is a country that no longer exists?",
            "Level": "1",
            "file_name": ""
        }
         {
          "task_id":"f918266a-b3e0-4914-865d-4faa564f1aef",
          "question":"What is the final numeric output from the attached Python code?",
          "Level":"1",
          "file_name":"f918266a-b3e0-4914-865d-4faa564f1aef.py"
       }


         {
            "task_id":"7bd855d8-463d-4ed5-93ca-5fe35145f733",
            "question":"The attached Excel file contains the sales of menu items for a local fast-food chain. What were the total sales that the chain made from food (not including drinks)? Express your answer in USD with two decimal places.",
            "Level":"1",
            "file_name":"7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx"
        }
        
    '''  


    return [    
        {
            'task_id': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3',
            'question': 'Hi, I\'m making a pie but I could use some help with my shopping list. I have everything I need for the crust, but I\'m not sure about the filling. I got the recipe from my friend Aditi, but she left it as a voice memo and the speaker on my phone is buzzing so I can\'t quite make out what she\'s saying. Could you please listen to the recipe and list all of the ingredients that my friend described? I only want the ingredients for the filling, as I have everything I need to make my favorite pie crust. I\'ve attached the recipe as Strawberry pie.mp3.\n\nIn your response, please only list the ingredients, not any measurements. So if the recipe calls for "a pinch of salt" or "two cups of ripe strawberries" the ingredients on the list would be "salt" and "ripe strawberries".\n\nPlease format your response as a comma separated list of ingredients. Also, please alphabetize the ingredients.', 
            'Level': '1', 
            'file_name': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3'
        },
        {
            "task_id":"f918266a-b3e0-4914-865d-4faa564f1aef",
            "question":"What is the final numeric output from the attached Python code?",
            "Level":"1",
            "file_name":"f918266a-b3e0-4914-865d-4faa564f1aef.py"
        },
        {
            "task_id":"7bd855d8-463d-4ed5-93ca-5fe35145f733",
            "question":"The attached Excel file contains the sales of menu items for a local fast-food chain. What were the total sales that the chain made from food (not including drinks)? Express your answer in USD with two decimal places.",
            "Level":"1",
            "file_name":"7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx"
        }, 
        {
            "task_id":"1f975693-876d-457b-a649-393859e79bf3",
            "question":"Hi, I was out sick from my classes on Friday, so I'm trying to figure out what I need to study for my Calculus mid-term next week. My friend from class sent me an audio recording of Professor Willowbrook giving out the recommended reading for the test, but my headphones are broken :(\n\nCould you please listen to the recording for me and tell me the page numbers I'm supposed to go over? I've attached a file called Homework.mp3 that has the recording. Please provide just the page numbers as a comma-delimited list. And please provide the list in ascending order.",
            "Level":"1",
            "file_name":"1f975693-876d-457b-a649-393859e79bf3.mp3"
        },
        {
            "task_id":"4fc2f1ae-8625-45b5-ab34-ad4433bc21f8",
            "question":"Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2016?",
            "Level":"1",
            "file_name":""
        },
        {
            "task_id":"2d83110e-a098-4ebb-9987-066c06fa42d0",
            "question":".rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI",
            "Level":"1",
            "file_name":""
        }
    ]




#Tools

def transcribe_audio(file_name: str) -> str:
    print_coso(f"usato transcribe_audio tool: {result['text']}")
    file_path = os.path.join("/data", file_name)
    if not os.path.isfile(file_path):
        return f"File not found: {file_path}"

    model = whisper.load_model("base")
    result = model.transcribe(file_path)

    print_coso(f"transcribe_audio tool result: {result['text']}")
    return result["text"]


def extract_ingredients(transcription: str) -> str:
    """
    Estrae una lista alfabetica, separata da virgole, di ingredienti dal testo fornito,
    mantenendo le descrizioni (es. 'freshly squeezed lemon juice').
    """
    print_coso("tool extract_ingredients")
    # pattern semplice per ingredienti comuni e le loro descrizioni
    pattern = r"\b(?:a dash of |a pinch of |freshly squeezed |pure )?[a-zA-Z ]+?(?:strawberries|sugar|lemon juice|cornstarch|vanilla extract)\b"
    matches = re.findall(pattern, transcription.lower())

    # normalizza, rimuove duplicati e ordina
    unique_ingredients = sorted(set(match.strip() for match in matches))
    return ", ".join(unique_ingredients)

def web_search(query: str) -> str:
    print_coso(f"tool web_search con query: {query}")
    with DDGS() as ddgs:
        results = ddgs.text(keywords = query, max_results=3)
        if not results:
            return "No results found."
        formattedResult = "\n".join([f"{res['title']} - {res['href']}" for res in results])
        print_coso(f"tool web_search formattedResult: {formattedResult}")
        return formattedResult
'''
def web_search(query: str) -> str:
    print_coso(f"tool web_search con query: {query}")
    try:
        with DDGS() as ddgs:
            results = ddgs.text(query)
            if not results:
                return "No results found."
            return "\n".join([r["body"] for r in results[:3]])
    except Exception as e:
        return f"Error: {e}"
'''

def log_thought(thought: str) -> str:
    print_coso(f"Tool log_thought: {thought}")
    return "Thought logged."

def sum_list(numbers: list[float]) -> float:
    total = sum(numbers)
    print_coso(f"[TOOL] sum_list called with: {numbers}")
    print_coso(f"[TOOL] Result: {total}")
    return total
    
def final_answer_tool(answer: str) -> str:
    print_coso(f"Final answer: {answer}")
    return answer

def print_coso(scritta: str):
    print(f"coso {scritta}")
    


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

##Roba per la valutazione        

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        #qui per servizio get domande
        if DOMANDE_MOCKATE:
            total_questions = create_mock_questions()
        else:
            response = requests.get(questions_url, timeout=15)
            response.raise_for_status()
            total_questions = response.json()
        
        print("\n\n")
        print(f"total_questions: {total_questions}")
        print("\n\n")
        questions_data = total_questions[:min(20, len(total_questions))]
        print_coso(f"questions_data: {questions_data}")
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            file_name = item.get("file_name")
            print_coso(f"file_name riga in 3. Run your Agent: {file_name}")
            submitted_answer = agent(question_text, file_name) #mock
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:


        
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        print_coso(result_data)
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)

        print(f"coso final_status: {final_status} - results_df: {results_df}")
        return final_status, results_df
        

        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)