File size: 24,990 Bytes
7d2cb2c
 
 
 
 
85e3677
d4a7cab
b34cb70
480aa76
d431a9a
e8de13a
2e8ab30
2fd1ae7
85e3677
 
2c4a6e2
7d4b9d7
6e5cf9b
8a2ddfa
d4b5ba8
 
 
 
68f8421
ca52d3a
fbe5fbd
 
 
 
 
55ff71e
 
fbe5fbd
93997a6
013ac54
 
7d2cb2c
f0355f6
d0c9345
4a510d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6295f49
4a510d9
 
 
b676e6b
 
 
 
 
 
 
845d9e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ff71e
 
dd4b0a3
 
 
 
 
 
845d9e9
f227f5c
 
c044f85
 
93997a6
655a9ba
 
93997a6
c044f85
f227f5c
c35143d
0581a0a
dd4b0a3
 
0a8cf3c
d99a6b9
 
f227f5c
 
d0c9345
f227f5c
 
a62509e
f227f5c
 
d0c9345
ec894d6
b676e6b
f0355f6
f227f5c
f0355f6
93997a6
 
 
 
 
f0355f6
82e8a8c
b34cb70
 
85986f1
fc798ed
ec894d6
 
 
 
 
 
 
 
b3cdd67
ec894d6
9cca3a1
 
 
02426fb
480aa76
01bccaf
ec894d6
109f3ff
 
 
962d9a2
 
1166eef
962d9a2
109f3ff
962d9a2
01bccaf
962d9a2
08e56ad
8749396
481f7d9
cf24738
f4e1e2d
ba6e97c
8749396
 
 
 
 
 
 
 
181888a
8749396
 
962d9a2
 
 
9d5fec9
109f3ff
25ad40c
109f3ff
 
 
ec894d6
109f3ff
 
02426fb
ec894d6
109f3ff
ec894d6
 
09826d1
 
 
 
 
ec894d6
 
 
 
 
 
 
 
 
db6e4d8
09826d1
ec894d6
 
 
 
 
 
 
 
 
b34cb70
8749396
9a00c73
8749396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a00c73
eecc65d
9a00c73
074f55e
d4b5ba8
074f55e
 
d4b5ba8
074f55e
5ff8b40
ec894d6
b34cb70
ec894d6
2043dcc
 
 
 
 
 
 
b34cb70
8749396
d6a1c64
 
 
 
 
 
 
 
ec894d6
 
b34cb70
 
 
1166eef
7f4b84d
 
 
 
 
1166eef
7f4b84d
 
 
 
 
b34cb70
1166eef
 
0a65f10
7f4b84d
 
0a65f10
1166eef
7f4b84d
1166eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e56ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01bccaf
1166eef
 
 
01bccaf
f0355f6
5ff8b40
f2cec54
c3ae3ca
99799cf
 
55b3602
 
 
99799cf
 
5ff8b40
 
c3ae3ca
 
 
5ff8b40
 
 
 
 
 
 
 
 
 
 
 
c3ae3ca
99799cf
ec894d6
 
 
845d9e9
 
 
 
8749396
845d9e9
 
 
 
 
 
5ff8b40
8749396
845d9e9
 
55ff71e
 
 
 
 
 
abcb574
55ff71e
 
 
 
 
 
 
845d9e9
 
 
 
fc798ed
1445ce8
ec894d6
 
 
af0a809
 
 
 
d4157c3
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5d765
b867a4b
 
 
 
 
 
5d5d765
ad42efc
 
 
b867a4b
fc798ed
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fad52
6c2bfa4
a3fad52
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef9b4
 
a3fad52
7d2cb2c
 
 
09cf714
7d2cb2c
 
 
 
 
 
 
 
 
fc798ed
 
7d2cb2c
a3fad52
 
55ef9b4
 
7d2cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7885ebe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import logging
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, OpenAIServerModel
from pathlib import Path
from prompt_settings import verification_of_final_answer, yaml_template

from llama_index.core import (
    VectorStoreIndex,
    SimpleDirectoryReader,
    Settings,
    set_global_handler
)

from llama_index.agent.openai import OpenAIAgent
from llama_index.core.tools import FunctionTool
#from llama_index.llms.openai import (
#    OpenAI
#)
from openai import OpenAI
#from openai import OpenAI as OpenAIClient

#per i file multimediali
import base64
import json
from PIL import Image
from io import BytesIO
from typing import List
import re


set_global_handler("simple")  # imposta un handler semplice per il logging
logging.getLogger().setLevel(logging.DEBUG)  # imposta il livello di log a DEBUG

class BasicAgent:
    def __init__(self):
        try:
            print("coso Initializing LlamaIndex-based agent...")
    
            # Leggi la chiave OpenAI dall'ambiente
            openai_api_key = os.getenv("OPENAI_API_KEY")
            if not openai_api_key:
                raise ValueError("OPENAI_API_KEY not set!")
    
            # Imposta il logger
            logging.basicConfig(level=logging.DEBUG)
    
            # LLM per LlamaIndex
            llm = OpenAI(
                api_key=openai_api_key
            )
            Settings.llm = llm
    
            # Tool per estrarre ingredienti
            ingredient_tool = FunctionTool.from_defaults(
                name="extract_ingredients",
                fn=extract_ingredients,
                description="Extracts and returns a comma-separated, alphabetized list of ingredients for a pie filling from a transcription string."
            )
    
            # Registra il tool
            Settings.tools = [ingredient_tool]
    
            # Prepara l'agente
            self.agent = OpenAIAgent.from_tools([ingredient_tool], llm=llm, verbose=True)
    
            # Client OpenAI per chiamate esterne (immagini/audio)
            self.client = OpenAI(api_key=openai_api_key)
    
            # Carica i documenti
            self.documents = SimpleDirectoryReader("data").load_data()
            self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings)
            self.query_engine = self.index.as_query_engine()
    
            print("coso Agent ready.")


        except Exception as e:
            import traceback
            print_coso("Error instantiating agent:", e)
            traceback.print_exc()

        


        

        '''
        tools = [
            {
                "type": "function",
                "function": {
                    "name": "transcribe_audio",
                    "description": "Transcribe an audio file (MP3 or similar) using Whisper.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "file_name": {
                                "type": "string",
                                "description": "The filename of the audio file to transcribe (e.g. 'example.mp3')"
                            }
                        },
                        "required": ["file_name"]
                    }
                }
            }
        ]

        ingredient_tool = FunctionTool.from_defaults(
                name="extract_ingredients",
                fn=extract_ingredients,
                description="Extracts and returns a comma-separated, alphabetized list of ingredients for a pie filling from a transcription string."
        )

        Settings.tools = [ingredient_tool]

        # Crea un'istanza di OpenAI
        llm = OpenAI(
            model="gpt-4o-mini",
            temperature=0,
            api_key=openai_api_key,
            #tools=tools,
            #tool_choice="auto",
            verbose = True
        )

        # Imposta le impostazioni tramite Settings
        Settings.llm=llm
       
        logging.basicConfig(level=logging.DEBUG)
        
        self.client = OpenAIClient(api_key=openai_api_key)
        

        # Carica i documenti dalla cartella 'data'
        self.documents = SimpleDirectoryReader("data").load_data()

        # Crea l'indice con la configurazione
        self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings)

        # Prepara il query engine
        self.query_engine = self.index.as_query_engine()
        print("coso Agent ready.")
    
    def __call__(self, question: str) -> str:
        print(f"Received question: {question[:50]}...")
        response = self.query_engine.query(question)

        # Stampa ragionamento interno
        print("Query response object:", response)
        print("Response text:", str(response))
        
        return str(response)
    '''


    def __call__(self, question: str, file_info: str = "") -> str:
        print_coso(f"Received question: {question[:100]}")

        # Prova a decodificare JSON
        try:
            q_data = json.loads(question)
        except json.JSONDecodeError:
            q_data = {"question": question}

        text = q_data.get("question", "")
        #file_info = q_data.get("file_name", "")

        print_coso(f"__call__ q_data: {q_data}")
        print_coso(f"__call__ text: {text}")
        print_coso(f"__call__ file_info: {file_info}")

        text = f"{text} {verification_of_final_answer} {yaml_template}"
        
        # Se è presente un file, gestiscilo

        risposta = ""
        
        if file_info.endswith((".png", ".jpg", ".jpeg")):
            print("coso Image file detected, processing with GPT-4o")
            image = get_or_download_image(file_info)
            response = self._ask_gpt4o_with_image(image, text)
            risposta = response

        elif file_info.endswith(".wav") or file_info.endswith(".mp3"):
            print("coso Audio file detected, processing with Whisper")
            audio_bytes = get_or_download_audio(file_info)
            if audio_bytes is not None:
                audio_file = BytesIO(audio_bytes) 
                print_coso(f"in mp3 audio_file: {audio_file}")
                audio_file.name = file_info
                transcription = self._transcribe_audio(audio_file)
                prompt_con_audio = (
                    f"The following is the transcription of an audio file related to the question.\n"
                    f"---\n"
                    f"{transcription}\n"
                    f"---\n"
                    f"Now, based on this transcription, answer the following question:\n"
                    f"{question}"
                )
                risposta = self._ask_gpt4o(prompt_con_audio)
            else:
                risposta = "Error loading audio file"

        elif file_info.endswith(".txt"):
            print("coso Text file detected")
            text_content = self._load_text(file_info)
            risposta = self._ask_gpt4o(text_content)
        else:
            print_coso("nessun file allegato")
            # Altrimenti gestisci solo testo
            risposta = self._ask_gpt4o(text)

        print_coso(f"risposta: {risposta}")
        return risposta


        
    def _ask_gpt4o(self, text: str) -> str:
        messages = [{"role": "user", "content": text}]
        response = self.client.chat.completions.create(
            model="gpt-4o-mini",
            temperature=0,
            messages=messages
        )
        return response.choices[0].message.content.strip()

    def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        image_bytes = buffered.read()

        response = self.client.chat.completions.create(
            model="gpt-4o",  #ATTENZIONE QUI MODELLO NON MINI
            temperature=0,
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": question},
                    {"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
                ]
            }]
        )
        return response.choices[0].message.content.strip()


    '''
    def _ask_gpt4o_with_mp3(self, audio: Image.Image, question: str) -> str:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        image_bytes = buffered.read()

        response = self.client.chat.completions.create(
            model="gpt-4o",  #ATTENZIONE QUI MODELLO NON MINI
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": question},
                    {"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
                ]
            }]
        )
        return response.choices[0].message.content.strip()    
    '''
    def _transcribe_audio(self, audio_bytes: BytesIO) -> str:
        #audio_file = BytesIO(audio_bytes)
        #transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_bytes)
        transcription = self.client.audio.transcriptions.create(
            file=audio_bytes,
            model="whisper-1",
            #api_key=os.getenv(openai_api_key)
        )
        print_coso(f"usato _transcribe_audio: {transcription}")
        return transcription.text.strip()

    def _load_image(self, data: str) -> Image.Image:
        print_coso(f"_load_image: {data}")
        try:
            coso = Image.open(BytesIO(base64.b64decode(data)))
            return coso
        except Exception as e:
            print_coso(f"_load_image error: {e}")
            return None            

    def _load_bytes(self, file_name: str) -> bytes:
        file_path = os.path.join("/data", file_name)
        try:
            with open(file_path, "rb") as f:
                return f.read()
        except Exception as e:
            print_coso(f"Error loading file {file_path}: {e}")
            return None
    
    def _load_text(self, data: str) -> str:
        return base64.b64decode(data).decode("utf-8")



def get_or_download_image(file_name: str) -> Image.Image:
    import os
    import requests
    from PIL import Image
    from io import BytesIO

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")

    if not hf_token:
        print("[ERRORE] HF_TOKEN_READ non trovato. Imposta la variabile d'ambiente HF_TOKEN_READ.")
        return None

    if not os.path.exists(file_path):
        print(f"[INFO] File {file_name} non trovato in /data, lo scarico...")

        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}

        try:
            response = requests.get(url, headers=headers)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)
            print(f"[INFO] Scaricato e salvato in {file_path}")
        except Exception as e:
            print(f"[ERRORE] Impossibile scaricare l'immagine: {e}")
            return None

    try:
        return Image.open(file_path)
    except Exception as e:
        print(f"[ERRORE] Impossibile aprire l'immagine {file_path}: {e}")
        return None


def get_or_download_audio(file_name: str) -> bytes:
    import os
    import requests

    file_path = os.path.join("data", file_name)
    hf_token = os.getenv("HF_TOKEN_READ")

    if not hf_token:
        print("[ERRORE] HF_TOKEN_READ non trovato. Imposta la variabile d'ambiente HF_TOKEN_READ.")
        return None

    if not os.path.exists(file_path):
        print(f"[INFO] File {file_name} non trovato in /data, lo scarico...")

        url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
        headers = {"Authorization": f"Bearer {hf_token}"}

        try:
            response = requests.get(url, headers=headers)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)
            print(f"[INFO] Scaricato e salvato in {file_path}")
        except Exception as e:
            print(f"[ERRORE] Impossibile scaricare il file audio: {e}")
            return None

    try:
        with open(file_path, "rb") as f:
            return f.read()
    except Exception as e:
        print(f"[ERRORE] Impossibile leggere il file audio {file_path}: {e}")
        return None


    
    '''
    base_url = "https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve"
    commit_hash = "86620fe7a265fdd074ea8d8c8b7a556a1058b0af"
    full_url = f"{base_url}/{commit_hash}/2023/validation/{file_name}"
    '''

DOMANDE_MOCKATE = True
def create_mock_questions():

    '''
    {    
      "task_id":"cca530fc-4052-43b2-b130-b30968d8aa44",
      "question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.",
      "Level":"1",
      "file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png" 
    },

    {'task_id': '8e867cd7-cff9-4e6c-867a-ff5ddc2550be', 
         'question': 'How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.', 
         'Level': '1',
         'file_name': ''
        }   
    '''  



    
    
    return [  
        {'task_id': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3',
         'question': 'Hi, I\'m making a pie but I could use some help with my shopping list. I have everything I need for the crust, but I\'m not sure about the filling. I got the recipe from my friend Aditi, but she left it as a voice memo and the speaker on my phone is buzzing so I can\'t quite make out what she\'s saying. Could you please listen to the recipe and list all of the ingredients that my friend described? I only want the ingredients for the filling, as I have everything I need to make my favorite pie crust. I\'ve attached the recipe as Strawberry pie.mp3.\n\nIn your response, please only list the ingredients, not any measurements. So if the recipe calls for "a pinch of salt" or "two cups of ripe strawberries" the ingredients on the list would be "salt" and "ripe strawberries".\n\nPlease format your response as a comma separated list of ingredients. Also, please alphabetize the ingredients.', 
         'Level': '1', 
         'file_name': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3'
        }      
    ]




#Tools

def transcribe_audio(file_name: str) -> str:
    print_coso(f"usato transcribe_audio tool: {result['text']}")
    file_path = os.path.join("/data", file_name)
    if not os.path.isfile(file_path):
        return f"File not found: {file_path}"

    model = whisper.load_model("base")
    result = model.transcribe(file_path)

    print_coso(f"transcribe_audio tool result: {result['text']}")
    return result["text"]


def extract_ingredients(transcription: str) -> str:
    """
    Estrae una lista alfabetica, separata da virgole, di ingredienti dal testo fornito,
    mantenendo le descrizioni (es. 'freshly squeezed lemon juice').
    """
    print_coso("tool extract_ingredients")
    # pattern semplice per ingredienti comuni e le loro descrizioni
    pattern = r"\b(?:a dash of |a pinch of |freshly squeezed |pure )?[a-zA-Z ]+?(?:strawberries|sugar|lemon juice|cornstarch|vanilla extract)\b"
    matches = re.findall(pattern, transcription.lower())

    # normalizza, rimuove duplicati e ordina
    unique_ingredients = sorted(set(match.strip() for match in matches))
    return ", ".join(unique_ingredients)
    



def print_coso(scritta: str):
    print(f"coso {scritta}")
    


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

##Roba per la valutazione        

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        #qui per servizio get domande
        if DOMANDE_MOCKATE:
            total_questions = create_mock_questions()
        else:
            response = requests.get(questions_url, timeout=15)
            response.raise_for_status()
            total_questions = response.json()
        
        print("\n\n")
        print(f"total_questions: {total_questions}")
        print("\n\n")
        questions_data = total_questions[:min(20, len(total_questions))]
        print_coso(f"questions_data: {questions_data}")
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            file_name = item.get("file_name")
            print_coso(f"file_name riga in 3. Run your Agent: {file_name}")
            submitted_answer = agent(question_text, file_name)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:


        
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        print_coso(result_data)
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)

        print(f"coso final_status: {final_status} - results_df: {results_df}")
        return final_status, results_df
        
        #return "mock1", None

        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)