BurhaanZargar's picture
queue removal
c0c2e82
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit.processor import IndicProcessor
import gradio as gr
import requests
from datetime import datetime
# Supabase configuration
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co"
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImdwdG1kYmh6YmxmeWJkbm9ocW5oIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDc0NjY1NDgsImV4cCI6MjA2MzA0MjU0OH0.CfWArts6Kd_x7Wj0a_nAyGJfrFt8F7Wdy_MdYDj9e7U" # ← Replace with your anon/public API key
SUPABASE_TABLE = "translations"
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load both models ahead of time
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE)
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE)
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)
ip = IndicProcessor(inference=True)
# Separate save function (only called if user clicks Save button)
def save_to_supabase(input_text, output_text, direction):
if not input_text.strip() or not output_text.strip():
return "Nothing to save."
# Choose table name based on direction
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
payload = {
"timestamp": datetime.utcnow().isoformat(),
"input_text": input_text,
"output_text": output_text
}
headers = {
"apikey": SUPABASE_API_KEY,
"Authorization": f"Bearer {SUPABASE_API_KEY}",
"Content-Type": "application/json"
}
try:
response = requests.post(
f"{SUPABASE_URL}/rest/v1/{table_name}",
headers=headers,
json=payload,
timeout=10
)
if response.status_code == 201:
return "βœ… Saved successfully!"
else:
print("SAVE ERROR:", response.status_code, response.text)
return "❌ Failed to save."
except Exception as e:
print("SAVE EXCEPTION:", e)
return "❌ Save request error."
# Function to retrieve recent translation history from Supabase
def get_translation_history(direction="en_to_ks"):
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
headers = {
"apikey": SUPABASE_API_KEY,
"Authorization": f"Bearer {SUPABASE_API_KEY}"
}
try:
response = requests.get(
f"{SUPABASE_URL}/rest/v1/{table_name}?order=timestamp.desc&limit=10",
headers=headers,
timeout=10
)
if response.status_code == 200:
records = response.json()
return "\n\n".join(
[f"Input: {r['input_text']} β†’ Output: {r['output_text']}" for r in records]
)
else:
return "Failed to load history."
except Exception as e:
print("HISTORY FETCH ERROR:", e)
return "Error loading history."
# Translation function
def translate(text, direction):
if not text.strip():
return "Please enter some text.", gr.update(), gr.update()
if direction == "en_to_ks":
src_lang = "eng_Latn"
tgt_lang = "kas_Arab"
model = model_en_to_indic
tokenizer = tokenizer_en_to_indic
else:
src_lang = "kas_Arab"
tgt_lang = "eng_Latn"
model = model_indic_to_en
tokenizer = tokenizer_indic_to_en
try:
processed = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
batch = tokenizer(processed, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = model.generate(
**batch,
max_length=256,
num_beams=5,
num_return_sequences=1
)
translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
result = ip.postprocess_batch(translated, lang=tgt_lang)[0]
return result, gr.update(), gr.update()
except Exception as e:
print("Translation Error:", e)
return "⚠️ Translation failed.", gr.update(), gr.update()
# Toggle function to switch direction and update labels
def switch_direction(direction, input_text_val, output_text_val):
new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks"
input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text"
output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation"
# Swap input/output text too
return (
new_direction,
gr.update(value=output_text_val, label=input_label),
gr.update(value=input_text_val, label=output_label)
)
# Update your Gradio interface block
with gr.Blocks() as interface:
gr.HTML("""
<div style="display: flex; justify-content: space-between; align-items: center; padding: 10px;">
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/211321a234613a9c3dd944fe9367cf13d1386239/assets/left_logo.png" style="height:150px; width:auto;">
<h2 style="margin: 0; text-align: center;">English ↔ Kashmiri Translator</h2>
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/77797f7f7cbee328fa0f9d31cf3e290441e04cd3/assets/right_logo.png">
</div>
""")
translation_direction = gr.State(value="en_to_ks")
with gr.Row():
input_text = gr.Textbox(lines=2, label="English Text", placeholder="Enter text....")
output_text = gr.Textbox(lines=2, label="Kashmiri Translation", placeholder="Translated text....")
with gr.Row():
translate_button = gr.Button("Translate")
save_button = gr.Button("Save Translation")
switch_button = gr.Button("Switch") # ← New button
save_status = gr.Textbox(label="Save Status", interactive=False)
history_box = gr.Textbox(lines=10, label="Translation History", interactive=False)
# Actions
translate_button.click(
fn=translate,
inputs=[input_text, translation_direction],
outputs=[output_text, input_text, output_text]
)
save_button.click(
fn=save_to_supabase,
inputs=[input_text, output_text, translation_direction],
outputs=save_status
).then(
fn=get_translation_history,
inputs=translation_direction,
outputs=history_box
)
switch_button.click(
fn=switch_direction,
inputs=[translation_direction, input_text, output_text],
outputs=[translation_direction, input_text, output_text]
)
if __name__ == "__main__":
interface.launch(share=True, inbrowser=True)