Spaces:
Running
Running
File size: 6,929 Bytes
902cd01 c0c2e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit.processor import IndicProcessor
import gradio as gr
import requests
from datetime import datetime
# Supabase configuration
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co"
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImdwdG1kYmh6YmxmeWJkbm9ocW5oIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDc0NjY1NDgsImV4cCI6MjA2MzA0MjU0OH0.CfWArts6Kd_x7Wj0a_nAyGJfrFt8F7Wdy_MdYDj9e7U" # β Replace with your anon/public API key
SUPABASE_TABLE = "translations"
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load both models ahead of time
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE)
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE)
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)
ip = IndicProcessor(inference=True)
# Separate save function (only called if user clicks Save button)
def save_to_supabase(input_text, output_text, direction):
if not input_text.strip() or not output_text.strip():
return "Nothing to save."
# Choose table name based on direction
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
payload = {
"timestamp": datetime.utcnow().isoformat(),
"input_text": input_text,
"output_text": output_text
}
headers = {
"apikey": SUPABASE_API_KEY,
"Authorization": f"Bearer {SUPABASE_API_KEY}",
"Content-Type": "application/json"
}
try:
response = requests.post(
f"{SUPABASE_URL}/rest/v1/{table_name}",
headers=headers,
json=payload,
timeout=10
)
if response.status_code == 201:
return "β
Saved successfully!"
else:
print("SAVE ERROR:", response.status_code, response.text)
return "β Failed to save."
except Exception as e:
print("SAVE EXCEPTION:", e)
return "β Save request error."
# Function to retrieve recent translation history from Supabase
def get_translation_history(direction="en_to_ks"):
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
headers = {
"apikey": SUPABASE_API_KEY,
"Authorization": f"Bearer {SUPABASE_API_KEY}"
}
try:
response = requests.get(
f"{SUPABASE_URL}/rest/v1/{table_name}?order=timestamp.desc&limit=10",
headers=headers,
timeout=10
)
if response.status_code == 200:
records = response.json()
return "\n\n".join(
[f"Input: {r['input_text']} β Output: {r['output_text']}" for r in records]
)
else:
return "Failed to load history."
except Exception as e:
print("HISTORY FETCH ERROR:", e)
return "Error loading history."
# Translation function
def translate(text, direction):
if not text.strip():
return "Please enter some text.", gr.update(), gr.update()
if direction == "en_to_ks":
src_lang = "eng_Latn"
tgt_lang = "kas_Arab"
model = model_en_to_indic
tokenizer = tokenizer_en_to_indic
else:
src_lang = "kas_Arab"
tgt_lang = "eng_Latn"
model = model_indic_to_en
tokenizer = tokenizer_indic_to_en
try:
processed = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
batch = tokenizer(processed, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = model.generate(
**batch,
max_length=256,
num_beams=5,
num_return_sequences=1
)
translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
result = ip.postprocess_batch(translated, lang=tgt_lang)[0]
return result, gr.update(), gr.update()
except Exception as e:
print("Translation Error:", e)
return "β οΈ Translation failed.", gr.update(), gr.update()
# Toggle function to switch direction and update labels
def switch_direction(direction, input_text_val, output_text_val):
new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks"
input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text"
output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation"
# Swap input/output text too
return (
new_direction,
gr.update(value=output_text_val, label=input_label),
gr.update(value=input_text_val, label=output_label)
)
# Update your Gradio interface block
with gr.Blocks() as interface:
gr.HTML("""
<div style="display: flex; justify-content: space-between; align-items: center; padding: 10px;">
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/211321a234613a9c3dd944fe9367cf13d1386239/assets/left_logo.png" style="height:150px; width:auto;">
<h2 style="margin: 0; text-align: center;">English β Kashmiri Translator</h2>
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/77797f7f7cbee328fa0f9d31cf3e290441e04cd3/assets/right_logo.png">
</div>
""")
translation_direction = gr.State(value="en_to_ks")
with gr.Row():
input_text = gr.Textbox(lines=2, label="English Text", placeholder="Enter text....")
output_text = gr.Textbox(lines=2, label="Kashmiri Translation", placeholder="Translated text....")
with gr.Row():
translate_button = gr.Button("Translate")
save_button = gr.Button("Save Translation")
switch_button = gr.Button("Switch") # β New button
save_status = gr.Textbox(label="Save Status", interactive=False)
history_box = gr.Textbox(lines=10, label="Translation History", interactive=False)
# Actions
translate_button.click(
fn=translate,
inputs=[input_text, translation_direction],
outputs=[output_text, input_text, output_text]
)
save_button.click(
fn=save_to_supabase,
inputs=[input_text, output_text, translation_direction],
outputs=save_status
).then(
fn=get_translation_history,
inputs=translation_direction,
outputs=history_box
)
switch_button.click(
fn=switch_direction,
inputs=[translation_direction, input_text, output_text],
outputs=[translation_direction, input_text, output_text]
)
if __name__ == "__main__":
interface.launch(share=True, inbrowser=True) |