File size: 6,929 Bytes
902cd01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c2e82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit.processor import IndicProcessor
import gradio as gr
import requests
from datetime import datetime

# Supabase configuration
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co" 
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImdwdG1kYmh6YmxmeWJkbm9ocW5oIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDc0NjY1NDgsImV4cCI6MjA2MzA0MjU0OH0.CfWArts6Kd_x7Wj0a_nAyGJfrFt8F7Wdy_MdYDj9e7U"                 # ← Replace with your anon/public API key
SUPABASE_TABLE = "translations"

# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load both models ahead of time
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE)
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE)
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)
ip = IndicProcessor(inference=True)

# Separate save function (only called if user clicks Save button)
def save_to_supabase(input_text, output_text, direction):
    if not input_text.strip() or not output_text.strip():
        return "Nothing to save."

    # Choose table name based on direction
    table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"

    payload = {
        "timestamp": datetime.utcnow().isoformat(),
        "input_text": input_text,
        "output_text": output_text
    }

    headers = {
        "apikey": SUPABASE_API_KEY,
        "Authorization": f"Bearer {SUPABASE_API_KEY}",
        "Content-Type": "application/json"
    }

    try:
        response = requests.post(
            f"{SUPABASE_URL}/rest/v1/{table_name}",
            headers=headers,
            json=payload,
            timeout=10
        )

        if response.status_code == 201:
            return "βœ… Saved successfully!"
        else:
            print("SAVE ERROR:", response.status_code, response.text)
            return "❌ Failed to save."
    except Exception as e:
        print("SAVE EXCEPTION:", e)
        return "❌ Save request error."



# Function to retrieve recent translation history from Supabase
def get_translation_history(direction="en_to_ks"):
    table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"

    headers = {
        "apikey": SUPABASE_API_KEY,
        "Authorization": f"Bearer {SUPABASE_API_KEY}"
    }

    try:
        response = requests.get(
            f"{SUPABASE_URL}/rest/v1/{table_name}?order=timestamp.desc&limit=10",
            headers=headers,
            timeout=10
        )

        if response.status_code == 200:
            records = response.json()
            return "\n\n".join(
                [f"Input: {r['input_text']} β†’ Output: {r['output_text']}" for r in records]
            )
        else:
            return "Failed to load history."
    except Exception as e:
        print("HISTORY FETCH ERROR:", e)
        return "Error loading history."


# Translation function
def translate(text, direction):
    if not text.strip():
        return "Please enter some text.", gr.update(), gr.update()

    if direction == "en_to_ks":
        src_lang = "eng_Latn"
        tgt_lang = "kas_Arab"
        model = model_en_to_indic
        tokenizer = tokenizer_en_to_indic
    else:
        src_lang = "kas_Arab"
        tgt_lang = "eng_Latn"
        model = model_indic_to_en
        tokenizer = tokenizer_indic_to_en

    try:
        processed = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
        batch = tokenizer(processed, return_tensors="pt", padding=True).to(DEVICE)

        with torch.no_grad():
            outputs = model.generate(
                **batch,
                max_length=256,
                num_beams=5,
                num_return_sequences=1
            )

        translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        result = ip.postprocess_batch(translated, lang=tgt_lang)[0]

        return result, gr.update(), gr.update()
    except Exception as e:
        print("Translation Error:", e)
        return "⚠️ Translation failed.", gr.update(), gr.update()



# Toggle function to switch direction and update labels
def switch_direction(direction, input_text_val, output_text_val):
    new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks"
    input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text"
    output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation"

    # Swap input/output text too
    return (
        new_direction,
        gr.update(value=output_text_val, label=input_label),
        gr.update(value=input_text_val, label=output_label)
    )


# Update your Gradio interface block
with gr.Blocks() as interface:
    gr.HTML("""
<div style="display: flex; justify-content: space-between; align-items: center; padding: 10px;">
    <img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/211321a234613a9c3dd944fe9367cf13d1386239/assets/left_logo.png" style="height:150px; width:auto;">
    <h2 style="margin: 0; text-align: center;">English ↔ Kashmiri Translator</h2>
    <img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/77797f7f7cbee328fa0f9d31cf3e290441e04cd3/assets/right_logo.png">
</div>
""")


    translation_direction = gr.State(value="en_to_ks")  

    with gr.Row():
        input_text = gr.Textbox(lines=2, label="English Text", placeholder="Enter text....")
        output_text = gr.Textbox(lines=2, label="Kashmiri Translation", placeholder="Translated text....")

    with gr.Row():
        translate_button = gr.Button("Translate")
        save_button = gr.Button("Save Translation")
        switch_button = gr.Button("Switch")  # ← New button

    save_status = gr.Textbox(label="Save Status", interactive=False)
    history_box = gr.Textbox(lines=10, label="Translation History", interactive=False)

    # Actions
    translate_button.click(
        fn=translate,
        inputs=[input_text, translation_direction],
        outputs=[output_text, input_text, output_text]
    )

    save_button.click(
    fn=save_to_supabase,
    inputs=[input_text, output_text, translation_direction],
    outputs=save_status
).then(
    fn=get_translation_history,
    inputs=translation_direction,
    outputs=history_box
)



    switch_button.click(
    fn=switch_direction,
    inputs=[translation_direction, input_text, output_text],
    outputs=[translation_direction, input_text, output_text]
)


if __name__ == "__main__":
    interface.launch(share=True, inbrowser=True)