Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline | |
from IndicTransToolkit.processor import IndicProcessor | |
import requests | |
from datetime import datetime | |
import tempfile | |
from gtts import gTTS | |
import os | |
# Device configuration | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Supabase configuration | |
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co" | |
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..." | |
# Load translation models | |
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE) | |
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True) | |
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE) | |
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True) | |
ip = IndicProcessor(inference=True) | |
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small") | |
def save_to_supabase(input_text, output_text, direction): | |
if not input_text.strip() or not output_text.strip(): | |
return "Nothing to save." | |
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations" | |
payload = { | |
"timestamp": datetime.utcnow().isoformat(), | |
"input_text": input_text, | |
"output_text": output_text | |
} | |
headers = { | |
"apikey": SUPABASE_API_KEY, | |
"Authorization": f"Bearer {SUPABASE_API_KEY}", | |
"Content-Type": "application/json" | |
} | |
try: | |
response = requests.post( | |
f"{SUPABASE_URL}/rest/v1/{table_name}", | |
headers=headers, | |
json=payload, | |
timeout=10 | |
) | |
return "β Saved successfully!" if response.status_code == 201 else "β Failed to save." | |
except Exception as e: | |
print("SAVE EXCEPTION:", e) | |
return "β Save request error." | |
def get_translation_history(direction="en_to_ks"): | |
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations" | |
headers = { | |
"apikey": SUPABASE_API_KEY, | |
"Authorization": f"Bearer {SUPABASE_API_KEY}" | |
} | |
try: | |
response = requests.get( | |
f"{SUPABASE_URL}/rest/v1/{table_name}?order=timestamp.desc&limit=10", | |
headers=headers, | |
timeout=10 | |
) | |
if response.status_code == 200: | |
records = response.json() | |
return "\n\n".join( | |
[f"Input: {r['input_text']} β Output: {r['output_text']}" for r in records] | |
) | |
return "Failed to load history." | |
except Exception as e: | |
print("HISTORY FETCH ERROR:", e) | |
return "Error loading history." | |
def translate(text, direction): | |
if not text.strip(): | |
return "Please enter some text.", gr.update(), gr.update() | |
if direction == "en_to_ks": | |
src_lang = "eng_Latn" | |
tgt_lang = "kas_Arab" | |
model = model_en_to_indic | |
tokenizer = tokenizer_en_to_indic | |
else: | |
src_lang = "kas_Arab" | |
tgt_lang = "eng_Latn" | |
model = model_indic_to_en | |
tokenizer = tokenizer_indic_to_en | |
try: | |
processed = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang) | |
batch = tokenizer(processed, return_tensors="pt", padding=True).to(DEVICE) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**batch, | |
max_length=256, | |
num_beams=5, | |
num_return_sequences=1 | |
) | |
translated = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
result = ip.postprocess_batch(translated, lang=tgt_lang)[0] | |
return result, gr.update(), gr.update() | |
except Exception as e: | |
print("Translation Error:", e) | |
return "β οΈ Translation failed.", gr.update(), gr.update() | |
def transcribe_audio(audio_path): | |
try: | |
result = asr(audio_path) | |
return result["text"] | |
except Exception as e: | |
print("STT Error:", e) | |
return "β οΈ Transcription failed." | |
def synthesize_tts(text, direction): | |
if direction == "ks_to_en" and text.strip(): | |
try: | |
tts = gTTS(text=text, lang="en") | |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
tts.save(tmp_file.name) | |
tmp_file.close() | |
return tmp_file.name | |
except Exception as e: | |
print("TTS Error:", e) | |
return None | |
def switch_direction(direction, input_text_val, output_text_val): | |
new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks" | |
input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text" | |
output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation" | |
return ( | |
new_direction, | |
gr.update(value=output_text_val, label=input_label), | |
gr.update(value=input_text_val, label=output_label) | |
) | |
def handle_audio_translation(audio_path, direction): | |
if direction == "en_to_ks": | |
transcription = transcribe_audio(audio_path) | |
if transcription.startswith("β οΈ"): | |
return transcription, "", "", None | |
translation, _, _ = translate(transcription, direction) | |
return transcription, translation, transcription, None | |
else: | |
# Assume audio_path is not used; rely on text in the input box | |
transcription = transcribe_audio(audio_path) | |
translation, _, _ = translate(transcription, direction) | |
tts_audio = synthesize_tts(translation, direction) | |
return transcription, translation, transcription, tts_audio | |
# === Gradio Interface === | |
with gr.Blocks() as interface: | |
gr.HTML(""" | |
<div style="display: flex; justify-content: space-between; align-items: center; padding: 10px;"> | |
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/211321a234613a9c3dd944fe9367cf13d1386239/assets/left_logo.png" style="height:150px; width:auto;"> | |
<h2 style="margin: 0; text-align: center;">English β Kashmiri Translator</h2> | |
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/77797f7f7cbee328fa0f9d31cf3e290441e04cd3/assets/right_logo.png"> | |
</div> | |
""") | |
translation_direction = gr.State(value="en_to_ks") | |
with gr.Row(): | |
input_text = gr.Textbox(lines=2, label="English Text", placeholder="Enter text....") | |
output_text = gr.Textbox(lines=2, label="Kashmiri Translation", placeholder="Translated text....") | |
with gr.Row(): | |
translate_button = gr.Button("Translate") | |
save_button = gr.Button("Save Translation") | |
switch_button = gr.Button("Switch") | |
save_status = gr.Textbox(label="Save Status", interactive=False) | |
history_box = gr.Textbox(lines=10, label="Translation History", interactive=False) | |
with gr.Row(): | |
audio_input = gr.Audio(type="filepath", label="ποΈ Upload or record English audio") | |
audio_output = gr.Audio(label="π English Output Audio") | |
stt_translate_button = gr.Button("π€ Transcribe & Translate") | |
# Events | |
translate_button.click( | |
fn=translate, | |
inputs=[input_text, translation_direction], | |
outputs=[output_text, input_text, output_text] | |
) | |
save_button.click( | |
fn=save_to_supabase, | |
inputs=[input_text, output_text, translation_direction], | |
outputs=save_status | |
).then( | |
fn=get_translation_history, | |
inputs=translation_direction, | |
outputs=history_box | |
) | |
switch_button.click( | |
fn=switch_direction, | |
inputs=[translation_direction, input_text, output_text], | |
outputs=[translation_direction, input_text, output_text] | |
) | |
stt_translate_button.click( | |
fn=handle_audio_translation, | |
inputs=[audio_input, translation_direction], | |
outputs=[input_text, output_text, input_text, audio_output] | |
) | |
if __name__ == "__main__": | |
interface.queue().launch(share=True) | |