File size: 8,160 Bytes
4133628
902cd01
7f95fc6
902cd01
 
 
7f95fc6
8c9cc75
 
902cd01
 
 
 
85071eb
 
 
 
7f95fc6
902cd01
 
 
 
 
85071eb
7f95fc6
8c9cc75
7f95fc6
902cd01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f95fc6
902cd01
 
 
 
85071eb
902cd01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f95fc6
902cd01
 
 
 
85071eb
902cd01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85071eb
7f95fc6
 
 
 
 
 
 
 
85071eb
7f95fc6
8c9cc75
7f95fc6
8c9cc75
 
 
 
 
7f95fc6
 
 
 
85071eb
902cd01
 
 
 
 
 
 
 
 
 
85071eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902cd01
 
7f95fc6
 
 
 
 
 
902cd01
7f95fc6
902cd01
 
 
 
 
 
 
 
7f95fc6
902cd01
 
 
 
7f95fc6
26ec24d
85071eb
 
7f95fc6
 
85071eb
902cd01
 
 
 
 
 
 
7f95fc6
 
 
 
 
 
 
 
902cd01
 
7f95fc6
 
 
 
902cd01
7f95fc6
85071eb
 
 
7f95fc6
902cd01
 
85071eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
from IndicTransToolkit.processor import IndicProcessor
import requests
from datetime import datetime
import tempfile
from gtts import gTTS
import os

# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Supabase configuration
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co"
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."

# Load translation models
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE)
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE)
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)

ip = IndicProcessor(inference=True)
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")


def save_to_supabase(input_text, output_text, direction):
    if not input_text.strip() or not output_text.strip():
        return "Nothing to save."

    table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
    payload = {
        "timestamp": datetime.utcnow().isoformat(),
        "input_text": input_text,
        "output_text": output_text
    }

    headers = {
        "apikey": SUPABASE_API_KEY,
        "Authorization": f"Bearer {SUPABASE_API_KEY}",
        "Content-Type": "application/json"
    }

    try:
        response = requests.post(
            f"{SUPABASE_URL}/rest/v1/{table_name}",
            headers=headers,
            json=payload,
            timeout=10
        )
        return "βœ… Saved successfully!" if response.status_code == 201 else "❌ Failed to save."
    except Exception as e:
        print("SAVE EXCEPTION:", e)
        return "❌ Save request error."


def get_translation_history(direction="en_to_ks"):
    table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"

    headers = {
        "apikey": SUPABASE_API_KEY,
        "Authorization": f"Bearer {SUPABASE_API_KEY}"
    }

    try:
        response = requests.get(
            f"{SUPABASE_URL}/rest/v1/{table_name}?order=timestamp.desc&limit=10",
            headers=headers,
            timeout=10
        )
        if response.status_code == 200:
            records = response.json()
            return "\n\n".join(
                [f"Input: {r['input_text']} β†’ Output: {r['output_text']}" for r in records]
            )
        return "Failed to load history."
    except Exception as e:
        print("HISTORY FETCH ERROR:", e)
        return "Error loading history."


def translate(text, direction):
    if not text.strip():
        return "Please enter some text.", gr.update(), gr.update()

    if direction == "en_to_ks":
        src_lang = "eng_Latn"
        tgt_lang = "kas_Arab"
        model = model_en_to_indic
        tokenizer = tokenizer_en_to_indic
    else:
        src_lang = "kas_Arab"
        tgt_lang = "eng_Latn"
        model = model_indic_to_en
        tokenizer = tokenizer_indic_to_en

    try:
        processed = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
        batch = tokenizer(processed, return_tensors="pt", padding=True).to(DEVICE)

        with torch.no_grad():
            outputs = model.generate(
                **batch,
                max_length=256,
                num_beams=5,
                num_return_sequences=1
            )

        translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        result = ip.postprocess_batch(translated, lang=tgt_lang)[0]

        return result, gr.update(), gr.update()
    except Exception as e:
        print("Translation Error:", e)
        return "⚠️ Translation failed.", gr.update(), gr.update()


def transcribe_audio(audio_path):
    try:
        result = asr(audio_path)
        return result["text"]
    except Exception as e:
        print("STT Error:", e)
        return "⚠️ Transcription failed."


def synthesize_tts(text, direction):
    if direction == "ks_to_en" and text.strip():
        try:
            tts = gTTS(text=text, lang="en")
            tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
            tts.save(tmp_file.name)
            tmp_file.close()
            return tmp_file.name
        except Exception as e:
            print("TTS Error:", e)
    return None


def switch_direction(direction, input_text_val, output_text_val):
    new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks"
    input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text"
    output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation"
    return (
        new_direction,
        gr.update(value=output_text_val, label=input_label),
        gr.update(value=input_text_val, label=output_label)
    )


def handle_audio_translation(audio_path, direction):
    if direction == "en_to_ks":
        transcription = transcribe_audio(audio_path)
        if transcription.startswith("⚠️"):
            return transcription, "", "", None
        translation, _, _ = translate(transcription, direction)
        return transcription, translation, transcription, None
    else:
        # Assume audio_path is not used; rely on text in the input box
        transcription = transcribe_audio(audio_path)
        translation, _, _ = translate(transcription, direction)
        tts_audio = synthesize_tts(translation, direction)
        return transcription, translation, transcription, tts_audio


# === Gradio Interface ===
with gr.Blocks() as interface:
    gr.HTML("""
    <div style="display: flex; justify-content: space-between; align-items: center; padding: 10px;">
        <img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/211321a234613a9c3dd944fe9367cf13d1386239/assets/left_logo.png" style="height:150px; width:auto;">
        <h2 style="margin: 0; text-align: center;">English ↔ Kashmiri Translator</h2>
        <img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/77797f7f7cbee328fa0f9d31cf3e290441e04cd3/assets/right_logo.png">
    </div>
    """)

    translation_direction = gr.State(value="en_to_ks")

    with gr.Row():
        input_text = gr.Textbox(lines=2, label="English Text", placeholder="Enter text....")
        output_text = gr.Textbox(lines=2, label="Kashmiri Translation", placeholder="Translated text....")

    with gr.Row():
        translate_button = gr.Button("Translate")
        save_button = gr.Button("Save Translation")
        switch_button = gr.Button("Switch")

    save_status = gr.Textbox(label="Save Status", interactive=False)
    history_box = gr.Textbox(lines=10, label="Translation History", interactive=False)

    with gr.Row():
        audio_input = gr.Audio(type="filepath", label="πŸŽ™οΈ Upload or record English audio")
        audio_output = gr.Audio(label="πŸ”Š English Output Audio")

    stt_translate_button = gr.Button("🎀 Transcribe & Translate")

    # Events
    translate_button.click(
        fn=translate,
        inputs=[input_text, translation_direction],
        outputs=[output_text, input_text, output_text]
    )

    save_button.click(
        fn=save_to_supabase,
        inputs=[input_text, output_text, translation_direction],
        outputs=save_status
    ).then(
        fn=get_translation_history,
        inputs=translation_direction,
        outputs=history_box
    )

    switch_button.click(
        fn=switch_direction,
        inputs=[translation_direction, input_text, output_text],
        outputs=[translation_direction, input_text, output_text]
    )

    stt_translate_button.click(
        fn=handle_audio_translation,
        inputs=[audio_input, translation_direction],
        outputs=[input_text, output_text, input_text, audio_output]
    )

if __name__ == "__main__":
    interface.queue().launch(share=True)