cloth-vton / test_vitonhd.py
abrarlohia's picture
Upload 37 files
c79133e verified
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel, CLIPTextModel
from diffusers import AutoencoderKL
from src.pipeline_tryon import FluxTryonPipeline
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import numpy as np
from PIL import Image
import os
import json
from datetime import datetime
from pathlib import Path
import argparse
torch_dtype = torch.bfloat16
model_caption_data, garment_caption_data, model_caption_inpaint = {},{},{}
model_caption_json = "data/zalando-hd-resized/model_caption.json"
if os.path.exists(model_caption_json):
with open(model_caption_json, "r") as f:
model_caption_data = json.load(f)
garment_caption_json = "data/zalando-hd-resized/cloth_caption.json"
if os.path.exists(garment_caption_json):
with open(garment_caption_json, "r") as f:
garment_caption_data = json.load(f)
model_inpaint_caption_json = "data/zalando-hd-resized/model_inpaint_caption.json"
if os.path.exists(model_inpaint_caption_json):
with open(model_inpaint_caption_json, "r") as f:
model_caption_inpaint = json.load(f)
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default="data/zalando-hd-resized/test/image")
parser.add_argument('--garment_dir', type=str, default="data/zalando-hd-resized/test/cloth")
parser.add_argument('--output_dir', type=str, default=None)
parser.add_argument('--meta_file', type=str, default="data/zalando-hd-resized/test_pairs.txt")
parser.add_argument('--model_path', type=str, default="black-forest-labs/FLUX.1-dev", help='Path to the model')
parser.add_argument("--train_double_block_only", action="store_true")
parser.add_argument('--paired', action="store_true")
parser.add_argument('--repaint', action="store_true")
parser.add_argument("--mask_dir", type=str, default=None, help="Directory containing mask images")
parser.add_argument("--source_dir", type=str, default=None, help="Directory containing source model images")
return parser.parse_args()
def load_models(model_path, device="cuda"):
# Enable memory efficient attention
text_encoder = CLIPTextModel.from_pretrained(f"{model_path}/text_encoder", torch_dtype=torch_dtype,)
text_encoder_2 = T5EncoderModel.from_pretrained(f"{model_path}/text_encoder_2", torch_dtype=torch_dtype,)
transformer = FluxTransformer2DModel.from_pretrained(f"{model_path}/transformer", torch_dtype=torch_dtype,)
vae = AutoencoderKL.from_pretrained(f"{model_path}/vae")
pipe = FluxTryonPipeline.from_pretrained(
model_path,
transformer=transformer,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=torch_dtype,
).to(device=device, dtype=torch_dtype)
# Enable memory efficient attention and VAE optimization
pipe.enable_attention_slicing()
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
vae.enable_slicing()
vae.enable_tiling()
pipe.load_lora_weights(
"loooooong/Any2anyTryon",
weight_name="dev_lora_tryon_vitonhd_512.safetensors",
adapter_name="tryon",
)
return pipe
def resize_by_height(image, height):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image is a PIL image
image = image.resize((int(image.width * height / image.height), height))
width = image.width - (image.width % 16)
height = image.height - (image.height % 16)
return image.resize((width, height))
from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers
from diffusers.models.modeling_outputs import Transformer2DModelOutput
@torch.no_grad
def generate_image(pipe, prompt, model_image, garment_image, height=512, width=384, seed=0, guidance_scale=3.5, train_double_block_only=False):
height, width = int(height), int(width)
width = width - (width % 16)
height = height - (height % 16)
concat_image_list = [Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8))]
model_image = resize_by_height(model_image, height)
garment_image = resize_by_height(garment_image, height)
concat_image_list.extend([model_image, garment_image])
image = np.concatenate([np.array(img) for img in concat_image_list], axis=1)
image = Image.fromarray(image)
mask = np.zeros_like(np.array(image))
mask[:,:width] = 255
mask_image = Image.fromarray(mask)
def forward_flux(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
img_ids_old = pipe._prepare_latent_image_ids(1, int(image.height) // (pipe.vae_scale_factor * 2), int(image.width) // (pipe.vae_scale_factor * 2), pipe.device, torch_dtype),
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
controlnet_blocks_repeat: bool = False,
):
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
print(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
print(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
print(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
image_rotary_emb2 = self.pos_embed(torch.cat((txt_ids, img_ids_old), dim=0))
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
# For Xlabs ControlNet.
if controlnet_blocks_repeat:
hidden_states = (
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
)
else:
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
image_rotary_emb = image_rotary_emb2
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
if train_double_block_only:
pipe.transformer.forward = forward_flux.__get__(pipe.transformer)
output = pipe(
prompt,
image=image,
mask_image=mask_image,
strength=1.,
height=height,
width=image.width,
target_width=width,
tryon=True,
guidance_scale=guidance_scale,
num_inference_steps=30,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
output_type="latent",
).images
latents = pipe._unpack_latents(output, image.height, image.width, pipe.vae_scale_factor)
latents = latents[:,:,:,:width//pipe.vae_scale_factor]
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
image = pipe.vae.decode(latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image, output_type="pil")[0]
return image
def inference(rank, world_size, args):
setup(rank, world_size)
device = torch.device(f"cuda:{rank}")
pairs_dict = {}
with open(args.meta_file, "r") as f:
pairs = f.read().splitlines()
for line in pairs:
img_fn, gmt_fn = line.split()
pairs_dict[img_fn] = img_fn if args.paired else gmt_fn
pipe = load_models(args.model_path, device=device)
scale = 1.0
pipe.set_adapters("tryon",adapter_weights=[scale])
height, width = 512, 384 # 768, 576 # 1024, 768 #
if args.output_dir is None:
args.output_dir = f"./results/vitonhd_test_{('paired' if args.paired else 'unpaired')}-"+f"_{height}_{width}"
os.makedirs(args.output_dir, exist_ok=True)
model_files = sorted(os.listdir(args.model_dir)) # sorted(list(pairs_dict.keys())) #
# Split work across GPUs
model_files = model_files[rank::world_size]
for model_file in model_files:
name = Path(model_file).stem
garment_file = pairs_dict[model_file]
if not os.path.exists(os.path.join(args.garment_dir, garment_file)):
print(f"Skipping {model_file} - no matching garment image")
continue
output_path = os.path.join(args.output_dir, f"{name}.jpg")
if os.path.exists(output_path):
print(f"Skipping {model_file} - output already exists")
continue
model_image = Image.open(os.path.join(args.model_dir, model_file))
garment_image = Image.open(os.path.join(args.garment_dir, garment_file))
model_caption = model_caption_inpaint.get(model_file, "a woman wearing fashion garment.") if args.paired else model_caption_data.get(model_file, "a woman wearing fashion garment.")
garment_caption = garment_caption_data.get(garment_file, "a fashion garment.")
prompt = f"The set of three images display model, garment and the model wearing the garment. <IMAGE1> {model_caption} <IMAGE2> {garment_caption} <IMAGE3> <IMAGE1> model wear <IMAGE2> garment."
output = generate_image(pipe, prompt, model_image, garment_image, height=height, width=width, train_double_block_only=args.train_double_block_only)
if args.repaint:
mask_file = os.path.join(args.mask_dir, name+"_mask.png")
source_model_file = os.path.join(args.source_dir, name+".jpg")
# Check if corresponding mask and source files exist
if not os.path.exists(mask_file) or not os.path.exists(source_model_file):
print(f"Skipping {model_file} - missing corresponding mask or source image files")
continue
mask = Image.open(mask_file).convert('L').resize(output.size)
source_model = Image.open(source_model_file).resize(output.size)
output = Image.composite(output, source_model, mask)
output.save(output_path)
print(f"Generated result for {name}", prompt)
cleanup()
def main():
args = parse_args()
# check args
if args.repaint:
if args.source_dir is None:
args.source_dir = args.model_dir
assert args.mask_dir is not None
world_size = torch.cuda.device_count()
mp.spawn(inference, args=(world_size, args), nprocs=world_size)
if __name__ == "__main__":
main()