File size: 16,123 Bytes
c79133e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel, CLIPTextModel
from diffusers import AutoencoderKL
from src.pipeline_tryon import FluxTryonPipeline

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import numpy as np
from PIL import Image
import os
import json
from datetime import datetime
from pathlib import Path
import argparse


torch_dtype = torch.bfloat16
model_caption_data, garment_caption_data, model_caption_inpaint = {},{},{}
model_caption_json = "data/zalando-hd-resized/model_caption.json"
if os.path.exists(model_caption_json):
    with open(model_caption_json, "r") as f:
        model_caption_data = json.load(f)
garment_caption_json = "data/zalando-hd-resized/cloth_caption.json"
if os.path.exists(garment_caption_json):
    with open(garment_caption_json, "r") as f:
        garment_caption_data = json.load(f)
model_inpaint_caption_json = "data/zalando-hd-resized/model_inpaint_caption.json"
if os.path.exists(model_inpaint_caption_json):
    with open(model_inpaint_caption_json, "r") as f:
        model_caption_inpaint = json.load(f)

def setup(rank, world_size):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12345'
    dist.init_process_group("nccl", rank=rank, world_size=world_size)

def cleanup():
    dist.destroy_process_group()

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_dir', type=str, default="data/zalando-hd-resized/test/image")
    parser.add_argument('--garment_dir', type=str, default="data/zalando-hd-resized/test/cloth")
    parser.add_argument('--output_dir', type=str, default=None)
    parser.add_argument('--meta_file', type=str, default="data/zalando-hd-resized/test_pairs.txt")
    parser.add_argument('--model_path', type=str, default="black-forest-labs/FLUX.1-dev", help='Path to the model')
    parser.add_argument("--train_double_block_only", action="store_true")
    parser.add_argument('--paired', action="store_true")
    parser.add_argument('--repaint', action="store_true")
    parser.add_argument("--mask_dir", type=str, default=None, help="Directory containing mask images")
    parser.add_argument("--source_dir", type=str, default=None, help="Directory containing source model images") 
    return parser.parse_args()

def load_models(model_path, device="cuda"):
    # Enable memory efficient attention
    text_encoder = CLIPTextModel.from_pretrained(f"{model_path}/text_encoder", torch_dtype=torch_dtype,)
    text_encoder_2 = T5EncoderModel.from_pretrained(f"{model_path}/text_encoder_2", torch_dtype=torch_dtype,)
    transformer = FluxTransformer2DModel.from_pretrained(f"{model_path}/transformer", torch_dtype=torch_dtype,)
    vae = AutoencoderKL.from_pretrained(f"{model_path}/vae")
    
    pipe = FluxTryonPipeline.from_pretrained(
        model_path,
        transformer=transformer,
        text_encoder=text_encoder,
        text_encoder_2=text_encoder_2,
        vae=vae,
        torch_dtype=torch_dtype,
    ).to(device=device, dtype=torch_dtype)
    
    # Enable memory efficient attention and VAE optimization
    pipe.enable_attention_slicing()
    # pipe.enable_sequential_cpu_offload()
    # pipe.enable_model_cpu_offload()
    vae.enable_slicing()
    vae.enable_tiling()
    pipe.load_lora_weights(
        "loooooong/Any2anyTryon",
        weight_name="dev_lora_tryon_vitonhd_512.safetensors",
        adapter_name="tryon",
    )
    return pipe

def resize_by_height(image, height):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    # image is a PIL image
    image = image.resize((int(image.width * height / image.height), height))
    width = image.width - (image.width % 16)
    height = image.height - (image.height % 16)
    return image.resize((width, height))

from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers
from diffusers.models.modeling_outputs import Transformer2DModelOutput

@torch.no_grad
def generate_image(pipe, prompt, model_image, garment_image, height=512, width=384, seed=0, guidance_scale=3.5, train_double_block_only=False):
    height, width = int(height), int(width)
    width = width - (width % 16)  
    height = height - (height % 16)

    concat_image_list = [Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8))]
    model_image = resize_by_height(model_image, height)
    garment_image = resize_by_height(garment_image, height)
    concat_image_list.extend([model_image, garment_image])

    image = np.concatenate([np.array(img) for img in concat_image_list], axis=1)
    image = Image.fromarray(image)
    
    mask = np.zeros_like(np.array(image))
    mask[:,:width] = 255
    mask_image = Image.fromarray(mask)

    def forward_flux(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        img_ids_old = pipe._prepare_latent_image_ids(1, int(image.height) // (pipe.vae_scale_factor * 2), int(image.width) // (pipe.vae_scale_factor * 2), pipe.device, torch_dtype),
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs = None,
        controlnet_block_samples=None,
        controlnet_single_block_samples=None,
        return_dict: bool = True,
        controlnet_blocks_repeat: bool = False,
    ):
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                print(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None

        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            print(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            print(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)
        image_rotary_emb2 = self.pos_embed(torch.cat((txt_ids, img_ids_old), dim=0))

        if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
            ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
            ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
            joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})

        for index_block, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs = {"use_reentrant": False}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
                interval_control = int(np.ceil(interval_control))
                # For Xlabs ControlNet.
                if controlnet_blocks_repeat:
                    hidden_states = (
                        hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                    )
                else:
                    hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
        
        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
        image_rotary_emb = image_rotary_emb2

        for index_block, block in enumerate(self.single_transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs = {"use_reentrant": False}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            # controlnet residual
            if controlnet_single_block_samples is not None:
                interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
                interval_control = int(np.ceil(interval_control))
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)
    if train_double_block_only:
        pipe.transformer.forward = forward_flux.__get__(pipe.transformer)
    output = pipe(
        prompt,
        image=image,
        mask_image=mask_image,
        strength=1.,
        height=height,
        width=image.width,
        target_width=width,
        tryon=True,
        guidance_scale=guidance_scale,
        num_inference_steps=30,
        max_sequence_length=512,
        generator=torch.Generator("cpu").manual_seed(seed),
        output_type="latent",
    ).images

    latents = pipe._unpack_latents(output, image.height, image.width, pipe.vae_scale_factor)
    latents = latents[:,:,:,:width//pipe.vae_scale_factor]
    latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
    image = pipe.vae.decode(latents, return_dict=False)[0]
    image = pipe.image_processor.postprocess(image, output_type="pil")[0]
    
    return image

def inference(rank, world_size, args):
    setup(rank, world_size)
    device = torch.device(f"cuda:{rank}")

    pairs_dict = {}
    with open(args.meta_file, "r") as f:
        pairs = f.read().splitlines()
    for line in pairs:
        img_fn, gmt_fn = line.split()
        pairs_dict[img_fn] = img_fn if args.paired else gmt_fn

    pipe = load_models(args.model_path, device=device)
    
    scale = 1.0
    pipe.set_adapters("tryon",adapter_weights=[scale]) 
    height, width = 512, 384 # 768, 576 # 1024, 768 # 
    if args.output_dir is None:
        args.output_dir = f"./results/vitonhd_test_{('paired' if args.paired else 'unpaired')}-"+f"_{height}_{width}"

    os.makedirs(args.output_dir, exist_ok=True)
    
    model_files = sorted(os.listdir(args.model_dir)) # sorted(list(pairs_dict.keys())) #
    
    # Split work across GPUs
    model_files = model_files[rank::world_size]
    
    for model_file in model_files:
        name = Path(model_file).stem
        garment_file = pairs_dict[model_file]
        
        if not os.path.exists(os.path.join(args.garment_dir, garment_file)):
            print(f"Skipping {model_file} - no matching garment image")
            continue
            
        output_path = os.path.join(args.output_dir, f"{name}.jpg")
        if os.path.exists(output_path):
            print(f"Skipping {model_file} - output already exists")
            continue
            
        model_image = Image.open(os.path.join(args.model_dir, model_file))
        garment_image = Image.open(os.path.join(args.garment_dir, garment_file))
        

        model_caption = model_caption_inpaint.get(model_file, "a woman wearing fashion garment.") if args.paired else model_caption_data.get(model_file, "a woman wearing fashion garment.")
        garment_caption = garment_caption_data.get(garment_file, "a fashion garment.")
        prompt = f"The set of three images display model, garment and the model wearing the garment. <IMAGE1> {model_caption} <IMAGE2> {garment_caption} <IMAGE3> <IMAGE1> model wear <IMAGE2> garment."
        
        output = generate_image(pipe, prompt, model_image, garment_image, height=height, width=width, train_double_block_only=args.train_double_block_only)

        if args.repaint:
            mask_file = os.path.join(args.mask_dir, name+"_mask.png")
            source_model_file = os.path.join(args.source_dir, name+".jpg")
            
            # Check if corresponding mask and source files exist
            if not os.path.exists(mask_file) or not os.path.exists(source_model_file):
                print(f"Skipping {model_file} - missing corresponding mask or source image files")
                continue

            mask = Image.open(mask_file).convert('L').resize(output.size)
            source_model = Image.open(source_model_file).resize(output.size)
            output = Image.composite(output, source_model, mask)
        
        output.save(output_path)
        print(f"Generated result for {name}", prompt)
    
    cleanup()

def main():
    args = parse_args()
    # check args
    if args.repaint:
        if args.source_dir is None:
            args.source_dir = args.model_dir
        assert args.mask_dir is not None
    world_size = torch.cuda.device_count()
    mp.spawn(inference, args=(world_size, args), nprocs=world_size)

if __name__ == "__main__":
    main()