Spaces:
Sleeping
Sleeping
File size: 16,123 Bytes
c79133e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel, CLIPTextModel
from diffusers import AutoencoderKL
from src.pipeline_tryon import FluxTryonPipeline
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import numpy as np
from PIL import Image
import os
import json
from datetime import datetime
from pathlib import Path
import argparse
torch_dtype = torch.bfloat16
model_caption_data, garment_caption_data, model_caption_inpaint = {},{},{}
model_caption_json = "data/zalando-hd-resized/model_caption.json"
if os.path.exists(model_caption_json):
with open(model_caption_json, "r") as f:
model_caption_data = json.load(f)
garment_caption_json = "data/zalando-hd-resized/cloth_caption.json"
if os.path.exists(garment_caption_json):
with open(garment_caption_json, "r") as f:
garment_caption_data = json.load(f)
model_inpaint_caption_json = "data/zalando-hd-resized/model_inpaint_caption.json"
if os.path.exists(model_inpaint_caption_json):
with open(model_inpaint_caption_json, "r") as f:
model_caption_inpaint = json.load(f)
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default="data/zalando-hd-resized/test/image")
parser.add_argument('--garment_dir', type=str, default="data/zalando-hd-resized/test/cloth")
parser.add_argument('--output_dir', type=str, default=None)
parser.add_argument('--meta_file', type=str, default="data/zalando-hd-resized/test_pairs.txt")
parser.add_argument('--model_path', type=str, default="black-forest-labs/FLUX.1-dev", help='Path to the model')
parser.add_argument("--train_double_block_only", action="store_true")
parser.add_argument('--paired', action="store_true")
parser.add_argument('--repaint', action="store_true")
parser.add_argument("--mask_dir", type=str, default=None, help="Directory containing mask images")
parser.add_argument("--source_dir", type=str, default=None, help="Directory containing source model images")
return parser.parse_args()
def load_models(model_path, device="cuda"):
# Enable memory efficient attention
text_encoder = CLIPTextModel.from_pretrained(f"{model_path}/text_encoder", torch_dtype=torch_dtype,)
text_encoder_2 = T5EncoderModel.from_pretrained(f"{model_path}/text_encoder_2", torch_dtype=torch_dtype,)
transformer = FluxTransformer2DModel.from_pretrained(f"{model_path}/transformer", torch_dtype=torch_dtype,)
vae = AutoencoderKL.from_pretrained(f"{model_path}/vae")
pipe = FluxTryonPipeline.from_pretrained(
model_path,
transformer=transformer,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=torch_dtype,
).to(device=device, dtype=torch_dtype)
# Enable memory efficient attention and VAE optimization
pipe.enable_attention_slicing()
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
vae.enable_slicing()
vae.enable_tiling()
pipe.load_lora_weights(
"loooooong/Any2anyTryon",
weight_name="dev_lora_tryon_vitonhd_512.safetensors",
adapter_name="tryon",
)
return pipe
def resize_by_height(image, height):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image is a PIL image
image = image.resize((int(image.width * height / image.height), height))
width = image.width - (image.width % 16)
height = image.height - (image.height % 16)
return image.resize((width, height))
from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers
from diffusers.models.modeling_outputs import Transformer2DModelOutput
@torch.no_grad
def generate_image(pipe, prompt, model_image, garment_image, height=512, width=384, seed=0, guidance_scale=3.5, train_double_block_only=False):
height, width = int(height), int(width)
width = width - (width % 16)
height = height - (height % 16)
concat_image_list = [Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8))]
model_image = resize_by_height(model_image, height)
garment_image = resize_by_height(garment_image, height)
concat_image_list.extend([model_image, garment_image])
image = np.concatenate([np.array(img) for img in concat_image_list], axis=1)
image = Image.fromarray(image)
mask = np.zeros_like(np.array(image))
mask[:,:width] = 255
mask_image = Image.fromarray(mask)
def forward_flux(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
img_ids_old = pipe._prepare_latent_image_ids(1, int(image.height) // (pipe.vae_scale_factor * 2), int(image.width) // (pipe.vae_scale_factor * 2), pipe.device, torch_dtype),
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
controlnet_blocks_repeat: bool = False,
):
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
print(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
print(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
print(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
image_rotary_emb2 = self.pos_embed(torch.cat((txt_ids, img_ids_old), dim=0))
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
# For Xlabs ControlNet.
if controlnet_blocks_repeat:
hidden_states = (
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
)
else:
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
image_rotary_emb = image_rotary_emb2
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
if train_double_block_only:
pipe.transformer.forward = forward_flux.__get__(pipe.transformer)
output = pipe(
prompt,
image=image,
mask_image=mask_image,
strength=1.,
height=height,
width=image.width,
target_width=width,
tryon=True,
guidance_scale=guidance_scale,
num_inference_steps=30,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
output_type="latent",
).images
latents = pipe._unpack_latents(output, image.height, image.width, pipe.vae_scale_factor)
latents = latents[:,:,:,:width//pipe.vae_scale_factor]
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
image = pipe.vae.decode(latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image, output_type="pil")[0]
return image
def inference(rank, world_size, args):
setup(rank, world_size)
device = torch.device(f"cuda:{rank}")
pairs_dict = {}
with open(args.meta_file, "r") as f:
pairs = f.read().splitlines()
for line in pairs:
img_fn, gmt_fn = line.split()
pairs_dict[img_fn] = img_fn if args.paired else gmt_fn
pipe = load_models(args.model_path, device=device)
scale = 1.0
pipe.set_adapters("tryon",adapter_weights=[scale])
height, width = 512, 384 # 768, 576 # 1024, 768 #
if args.output_dir is None:
args.output_dir = f"./results/vitonhd_test_{('paired' if args.paired else 'unpaired')}-"+f"_{height}_{width}"
os.makedirs(args.output_dir, exist_ok=True)
model_files = sorted(os.listdir(args.model_dir)) # sorted(list(pairs_dict.keys())) #
# Split work across GPUs
model_files = model_files[rank::world_size]
for model_file in model_files:
name = Path(model_file).stem
garment_file = pairs_dict[model_file]
if not os.path.exists(os.path.join(args.garment_dir, garment_file)):
print(f"Skipping {model_file} - no matching garment image")
continue
output_path = os.path.join(args.output_dir, f"{name}.jpg")
if os.path.exists(output_path):
print(f"Skipping {model_file} - output already exists")
continue
model_image = Image.open(os.path.join(args.model_dir, model_file))
garment_image = Image.open(os.path.join(args.garment_dir, garment_file))
model_caption = model_caption_inpaint.get(model_file, "a woman wearing fashion garment.") if args.paired else model_caption_data.get(model_file, "a woman wearing fashion garment.")
garment_caption = garment_caption_data.get(garment_file, "a fashion garment.")
prompt = f"The set of three images display model, garment and the model wearing the garment. <IMAGE1> {model_caption} <IMAGE2> {garment_caption} <IMAGE3> <IMAGE1> model wear <IMAGE2> garment."
output = generate_image(pipe, prompt, model_image, garment_image, height=height, width=width, train_double_block_only=args.train_double_block_only)
if args.repaint:
mask_file = os.path.join(args.mask_dir, name+"_mask.png")
source_model_file = os.path.join(args.source_dir, name+".jpg")
# Check if corresponding mask and source files exist
if not os.path.exists(mask_file) or not os.path.exists(source_model_file):
print(f"Skipping {model_file} - missing corresponding mask or source image files")
continue
mask = Image.open(mask_file).convert('L').resize(output.size)
source_model = Image.open(source_model_file).resize(output.size)
output = Image.composite(output, source_model, mask)
output.save(output_path)
print(f"Generated result for {name}", prompt)
cleanup()
def main():
args = parse_args()
# check args
if args.repaint:
if args.source_dir is None:
args.source_dir = args.model_dir
assert args.mask_dir is not None
world_size = torch.cuda.device_count()
mp.spawn(inference, args=(world_size, args), nprocs=world_size)
if __name__ == "__main__":
main() |