cloth-vton / app.py
abrarlohia's picture
Update app.py
cde67e2 verified
import torch
import numpy as np
from PIL import Image
import gradio as gr
import os
import json
import argparse
from diffusers import FluxTransformer2DModel, AutoencoderKL
from diffusers.hooks import apply_group_offloading
from transformers import T5EncoderModel, CLIPTextModel
from src.pipeline_tryon import FluxTryonPipeline
from optimum.quanto import freeze, qfloat8, quantize
device = torch.device("cuda")
torch_dtype = torch.bfloat16 # torch.float16
def load_models(device=device, torch_dtype=torch_dtype,group_offloading=False):
bfl_repo = "Fynd/flux-dev-1-clone"
# Enable memory efficient attention
text_encoder = CLIPTextModel.from_pretrained(bfl_repo, subfolder="text_encoder", torch_dtype=torch_dtype,)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=torch_dtype,)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=torch_dtype,)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=torch_dtype)
# transformer = FluxTransformer2DModel.from_single_file("Kijai/flux-fp8/flux1-dev-fp8.safetensors", torch_dtype=torch_dtype)
pipe = FluxTryonPipeline.from_pretrained(
bfl_repo,
transformer=transformer,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=torch_dtype,
)#.to(device="cpu", dtype=torch_dtype)
# pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) # Do not use this if resolution can change
# # quantize transformer cause severe degration
# quantize(pipe.transformer, weights=qfloat8)
# freeze(pipe.transformer)
quantize(pipe.text_encoder_2, weights=qfloat8)
freeze(pipe.text_encoder_2)
# pipe.to(device=device)
# Enable memory efficient attention and VAE optimization
pipe.enable_attention_slicing()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
pipe.load_lora_weights(
"loooooong/Any2anyTryon",
weight_name="dev_lora_any2any_alltasks.safetensors",
adapter_name="tryon",
)
pipe.remove_all_hooks()
if group_offloading:
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#group-offloading
apply_group_offloading(
pipe.transformer,
offload_type="leaf_level",
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
# apply_group_offloading(
# pipe.text_encoder_2,
# offload_device=torch.device("cpu"),
# onload_device=torch.device(device),
# offload_type="leaf_level",
# use_stream=True,
# )
apply_group_offloading(
pipe.vae,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
pipe.to(device=device)
return pipe
def crop_to_multiple_of_16(img):
width, height = img.size
# Calculate new dimensions that are multiples of 8
new_width = width - (width % 16)
new_height = height - (height % 16)
# Calculate crop box coordinates
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
# Crop the image
cropped_img = img.crop((left, top, right, bottom))
return cropped_img
def resize_and_pad_to_size(image, target_width, target_height):
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Get original dimensions
orig_width, orig_height = image.size
# Calculate aspect ratios
target_ratio = target_width / target_height
orig_ratio = orig_width / orig_height
# Calculate new dimensions while maintaining aspect ratio
if orig_ratio > target_ratio:
# Image is wider than target ratio - scale by width
new_width = target_width
new_height = int(new_width / orig_ratio)
else:
# Image is taller than target ratio - scale by height
new_height = target_height
new_width = int(new_height * orig_ratio)
# Resize image
resized_image = image.resize((new_width, new_height))
# Create white background image of target size
padded_image = Image.new('RGB', (target_width, target_height), 'white')
# Calculate padding to center the image
left_padding = (target_width - new_width) // 2
top_padding = (target_height - new_height) // 2
# Paste resized image onto padded background
padded_image.paste(resized_image, (left_padding, top_padding))
return padded_image, left_padding, top_padding, target_width - new_width - left_padding, target_height - new_height - top_padding
def resize_by_height(image, height):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image is a PIL image
image = image.resize((int(image.width * height / image.height), height))
return crop_to_multiple_of_16(image)
# @spaces.GPU()
@torch.no_grad
def generate_image(prompt, model_image, garment_image, height=512, width=384, seed=0, guidance_scale=3.5, show_type="follow model image", num_inference_steps=30):
height, width = int(height), int(width)
width = width - (width % 16)
height = height - (height % 16)
concat_image_list = [np.zeros((height, width, 3), dtype=np.uint8)]
has_model_image = model_image is not None
has_garment_image = garment_image is not None
if has_model_image:
if has_garment_image:
# if both model and garment image are provided, ensure model image and target image have the same size
input_height, input_width = model_image.shape[:2]
model_image, lp, tp, rp, bp = resize_and_pad_to_size(Image.fromarray(model_image), width, height)
else:
model_image = resize_by_height(model_image, height)
# model_image = resize_and_pad_to_size(Image.fromarray(model_image), width, height)
concat_image_list.append(model_image)
if has_garment_image:
# if has_model_image:
# garment_image = resize_and_pad_to_size(Image.fromarray(garment_image), width, height)
# else:
garment_image = resize_by_height(garment_image, height)
concat_image_list.append(garment_image)
image = np.concatenate([np.array(img) for img in concat_image_list], axis=1)
image = Image.fromarray(image)
mask = np.zeros_like(image)
mask[:,:width] = 255
mask_image = Image.fromarray(mask)
assert height==image.height, "ensure same height"
# with torch.cuda.amp.autocast(): # this cause black image
# with torch.no_grad():
output = pipe(
prompt,
image=image,
mask_image=mask_image,
strength=1.,
height=height,
width=image.width,
target_width=width,
tryon=has_model_image and has_garment_image,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
).images
latents = pipe._unpack_latents(output, image.height, image.width, pipe.vae_scale_factor)
if show_type!="all outputs":
latents = latents[:,:,:,:width//pipe.vae_scale_factor]
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
image = pipe.vae.decode(latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image, output_type="pil")[0]
output = image
if show_type=="follow model image" and has_model_image and has_garment_image:
output = output.crop((lp, tp, output.width-rp, output.height-bp)).resize((input_width, input_height))
return output
def update_dimensions(model_image, garment_image, height, width, auto_ar):
if not auto_ar:
return height, width
if model_image is not None:
height = model_image.shape[0]
width = model_image.shape[1]
elif garment_image is not None:
height = garment_image.shape[0]
width = garment_image.shape[1]
else:
height = 512
width = 384
# Set max dimensions and minimum size
max_height = 1024
max_width = 1024
min_size = 384
# Scale down if exceeds max dimensions while maintaining aspect ratio
if height > max_height or width > max_width:
aspect_ratio = width / height
if height > max_height:
height = max_height
width = int(height * aspect_ratio)
if width > max_width:
width = max_width
height = int(width / aspect_ratio)
# Scale up if below minimum size while maintaining aspect ratio
if height < min_size and width < min_size:
aspect_ratio = width / height
if height < width:
height = min_size
width = int(height * aspect_ratio)
else:
width = min_size
height = int(width / aspect_ratio)
return height, width
model1 = Image.open("asset/images/model/model1.png")
model2 = Image.open("asset/images/model/model2.jpg")
model3 = Image.open("asset/images/model/model3.png")
model4 = Image.open("asset/images/model/model4.png")
garment1 = Image.open("asset/images/garment/garment1.jpg")
garment2 = Image.open("asset/images/garment/garment2.jpg")
garment3 = Image.open("asset/images/garment/garment3.jpg")
garment4 = Image.open("asset/images/garment/garment4.jpg")
def launch_demo():
with gr.Blocks() as demo:
gr.Markdown("# Any2AnyTryon")
gr.Markdown("Demo(experimental) for [Any2AnyTryon: Leveraging Adaptive Position Embeddings for Versatile Virtual Clothing Tasks](https://arxiv.org/abs/2501.15891) ([Code](https://github.com/logn-2024/Any2anyTryon)).")
with gr.Row():
with gr.Column():
model_image = gr.Image(label="Model Image", type="numpy", interactive=True,)
with gr.Row():
garment_image = gr.Image(label="Garment Image", type="numpy", interactive=True,)
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Try example prompts from right side",
placeholder="Enter your prompt here...",
value="",
# visible=False,
)
with gr.Row():
height = gr.Number(label="Height", value=576, precision=0)
width = gr.Number(label="Width", value=576, precision=0)
seed = gr.Number(label="Seed", value=0, precision=0)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Number(label="Guidance Scale", value=3.5)
num_inference_steps = gr.Number(label="Inference Steps", value=15)
show_type = gr.Radio(label="Show Type",choices=["follow model image", "follow height & width", "all outputs"],value="follow model image")
auto_ar = gr.Checkbox(label="Detect Image Size(From Uploaded Images)", value=False, visible=True,)
btn = gr.Button("Generate")
with gr.Column():
output = gr.Image(label="Generated Image")
example_prompts = gr.Examples(
[
"<MODEL> a person with fashion garment. <GARMENT> a garment. <TARGET> model with fashion garment",
"<MODEL> a person with fashion garment. <TARGET> the same garment laid flat.",
"<GARMENT> The image shows a fashion garment. <TARGET> a smiling person with the garment in white background",
],
inputs=prompt,
label="Example Prompts",
# visible=False
)
example_model = gr.Examples(
examples=[
model1, model2, model3, model4
],
inputs=model_image,
label="Example Model Images"
)
example_garment = gr.Examples(
examples=[
garment1, garment2, garment3, garment4
],
inputs=garment_image,
label="Example Garment Images"
)
# Update dimensions when images change
model_image.change(fn=update_dimensions,
inputs=[model_image, garment_image, height, width, auto_ar],
outputs=[height, width])
garment_image.change(fn=update_dimensions,
inputs=[model_image, garment_image, height, width, auto_ar],
outputs=[height, width])
btn.click(fn=generate_image,
inputs=[prompt, model_image, garment_image, height, width, seed, guidance_scale, show_type, num_inference_steps],
outputs=output)
demo.title = "FLUX Image Generation Demo"
demo.description = "Generate images using FLUX model with LoRA"
examples = [
# tryon
[
'''<MODEL> a man <GARMENT> a medium-sized, short-sleeved, blue t-shirt with a round neckline and a pocket on the front. <TARGET> model with fashion garment''',
model1,
garment1,
576, 576
],
[
'''<MODEL> a man with gray hair and a beard wearing a black jacket and sunglasses, standing in front of a body of water with mountains in the background and a cloudy sky above <GARMENT> a black and white striped t-shirt with a red heart embroidered on the chest <TARGET> ''',
model2,
garment2,
576, 576
],
[
'''<MODEL> a person with fashion garment. <GARMENT> a garment. <TARGET> model with fashion garment''',
model3,
garment3,
576, 576
],
[
'''<MODEL> a woman lift up her right leg. <GARMENT> a pair of black and white patterned pajama pants. <TARGET> model with fashion garment''',
model4,
garment4,
576, 576
],
]
gr.Examples(
examples=examples,
inputs=[prompt, model_image, garment_image],
outputs=output,
fn=generate_image,
cache_examples=False,
examples_per_page=20
)
demo.queue().launch(share=False, show_error=False,
server_name="0.0.0.0"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--group_offloading', action="store_true")
args=parser.parse_args()
pipe = load_models(group_offloading=args.group_offloading)
launch_demo()