Spaces:
Sleeping
Sleeping
File size: 15,735 Bytes
c79133e cde67e2 c79133e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import torch
import numpy as np
from PIL import Image
import gradio as gr
import os
import json
import argparse
from diffusers import FluxTransformer2DModel, AutoencoderKL
from diffusers.hooks import apply_group_offloading
from transformers import T5EncoderModel, CLIPTextModel
from src.pipeline_tryon import FluxTryonPipeline
from optimum.quanto import freeze, qfloat8, quantize
device = torch.device("cuda")
torch_dtype = torch.bfloat16 # torch.float16
def load_models(device=device, torch_dtype=torch_dtype,group_offloading=False):
bfl_repo = "Fynd/flux-dev-1-clone"
# Enable memory efficient attention
text_encoder = CLIPTextModel.from_pretrained(bfl_repo, subfolder="text_encoder", torch_dtype=torch_dtype,)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=torch_dtype,)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=torch_dtype,)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=torch_dtype)
# transformer = FluxTransformer2DModel.from_single_file("Kijai/flux-fp8/flux1-dev-fp8.safetensors", torch_dtype=torch_dtype)
pipe = FluxTryonPipeline.from_pretrained(
bfl_repo,
transformer=transformer,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=torch_dtype,
)#.to(device="cpu", dtype=torch_dtype)
# pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) # Do not use this if resolution can change
# # quantize transformer cause severe degration
# quantize(pipe.transformer, weights=qfloat8)
# freeze(pipe.transformer)
quantize(pipe.text_encoder_2, weights=qfloat8)
freeze(pipe.text_encoder_2)
# pipe.to(device=device)
# Enable memory efficient attention and VAE optimization
pipe.enable_attention_slicing()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
pipe.load_lora_weights(
"loooooong/Any2anyTryon",
weight_name="dev_lora_any2any_alltasks.safetensors",
adapter_name="tryon",
)
pipe.remove_all_hooks()
if group_offloading:
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#group-offloading
apply_group_offloading(
pipe.transformer,
offload_type="leaf_level",
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
# apply_group_offloading(
# pipe.text_encoder_2,
# offload_device=torch.device("cpu"),
# onload_device=torch.device(device),
# offload_type="leaf_level",
# use_stream=True,
# )
apply_group_offloading(
pipe.vae,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
pipe.to(device=device)
return pipe
def crop_to_multiple_of_16(img):
width, height = img.size
# Calculate new dimensions that are multiples of 8
new_width = width - (width % 16)
new_height = height - (height % 16)
# Calculate crop box coordinates
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
# Crop the image
cropped_img = img.crop((left, top, right, bottom))
return cropped_img
def resize_and_pad_to_size(image, target_width, target_height):
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Get original dimensions
orig_width, orig_height = image.size
# Calculate aspect ratios
target_ratio = target_width / target_height
orig_ratio = orig_width / orig_height
# Calculate new dimensions while maintaining aspect ratio
if orig_ratio > target_ratio:
# Image is wider than target ratio - scale by width
new_width = target_width
new_height = int(new_width / orig_ratio)
else:
# Image is taller than target ratio - scale by height
new_height = target_height
new_width = int(new_height * orig_ratio)
# Resize image
resized_image = image.resize((new_width, new_height))
# Create white background image of target size
padded_image = Image.new('RGB', (target_width, target_height), 'white')
# Calculate padding to center the image
left_padding = (target_width - new_width) // 2
top_padding = (target_height - new_height) // 2
# Paste resized image onto padded background
padded_image.paste(resized_image, (left_padding, top_padding))
return padded_image, left_padding, top_padding, target_width - new_width - left_padding, target_height - new_height - top_padding
def resize_by_height(image, height):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image is a PIL image
image = image.resize((int(image.width * height / image.height), height))
return crop_to_multiple_of_16(image)
# @spaces.GPU()
@torch.no_grad
def generate_image(prompt, model_image, garment_image, height=512, width=384, seed=0, guidance_scale=3.5, show_type="follow model image", num_inference_steps=30):
height, width = int(height), int(width)
width = width - (width % 16)
height = height - (height % 16)
concat_image_list = [np.zeros((height, width, 3), dtype=np.uint8)]
has_model_image = model_image is not None
has_garment_image = garment_image is not None
if has_model_image:
if has_garment_image:
# if both model and garment image are provided, ensure model image and target image have the same size
input_height, input_width = model_image.shape[:2]
model_image, lp, tp, rp, bp = resize_and_pad_to_size(Image.fromarray(model_image), width, height)
else:
model_image = resize_by_height(model_image, height)
# model_image = resize_and_pad_to_size(Image.fromarray(model_image), width, height)
concat_image_list.append(model_image)
if has_garment_image:
# if has_model_image:
# garment_image = resize_and_pad_to_size(Image.fromarray(garment_image), width, height)
# else:
garment_image = resize_by_height(garment_image, height)
concat_image_list.append(garment_image)
image = np.concatenate([np.array(img) for img in concat_image_list], axis=1)
image = Image.fromarray(image)
mask = np.zeros_like(image)
mask[:,:width] = 255
mask_image = Image.fromarray(mask)
assert height==image.height, "ensure same height"
# with torch.cuda.amp.autocast(): # this cause black image
# with torch.no_grad():
output = pipe(
prompt,
image=image,
mask_image=mask_image,
strength=1.,
height=height,
width=image.width,
target_width=width,
tryon=has_model_image and has_garment_image,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
).images
latents = pipe._unpack_latents(output, image.height, image.width, pipe.vae_scale_factor)
if show_type!="all outputs":
latents = latents[:,:,:,:width//pipe.vae_scale_factor]
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
image = pipe.vae.decode(latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image, output_type="pil")[0]
output = image
if show_type=="follow model image" and has_model_image and has_garment_image:
output = output.crop((lp, tp, output.width-rp, output.height-bp)).resize((input_width, input_height))
return output
def update_dimensions(model_image, garment_image, height, width, auto_ar):
if not auto_ar:
return height, width
if model_image is not None:
height = model_image.shape[0]
width = model_image.shape[1]
elif garment_image is not None:
height = garment_image.shape[0]
width = garment_image.shape[1]
else:
height = 512
width = 384
# Set max dimensions and minimum size
max_height = 1024
max_width = 1024
min_size = 384
# Scale down if exceeds max dimensions while maintaining aspect ratio
if height > max_height or width > max_width:
aspect_ratio = width / height
if height > max_height:
height = max_height
width = int(height * aspect_ratio)
if width > max_width:
width = max_width
height = int(width / aspect_ratio)
# Scale up if below minimum size while maintaining aspect ratio
if height < min_size and width < min_size:
aspect_ratio = width / height
if height < width:
height = min_size
width = int(height * aspect_ratio)
else:
width = min_size
height = int(width / aspect_ratio)
return height, width
model1 = Image.open("asset/images/model/model1.png")
model2 = Image.open("asset/images/model/model2.jpg")
model3 = Image.open("asset/images/model/model3.png")
model4 = Image.open("asset/images/model/model4.png")
garment1 = Image.open("asset/images/garment/garment1.jpg")
garment2 = Image.open("asset/images/garment/garment2.jpg")
garment3 = Image.open("asset/images/garment/garment3.jpg")
garment4 = Image.open("asset/images/garment/garment4.jpg")
def launch_demo():
with gr.Blocks() as demo:
gr.Markdown("# Any2AnyTryon")
gr.Markdown("Demo(experimental) for [Any2AnyTryon: Leveraging Adaptive Position Embeddings for Versatile Virtual Clothing Tasks](https://arxiv.org/abs/2501.15891) ([Code](https://github.com/logn-2024/Any2anyTryon)).")
with gr.Row():
with gr.Column():
model_image = gr.Image(label="Model Image", type="numpy", interactive=True,)
with gr.Row():
garment_image = gr.Image(label="Garment Image", type="numpy", interactive=True,)
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Try example prompts from right side",
placeholder="Enter your prompt here...",
value="",
# visible=False,
)
with gr.Row():
height = gr.Number(label="Height", value=576, precision=0)
width = gr.Number(label="Width", value=576, precision=0)
seed = gr.Number(label="Seed", value=0, precision=0)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Number(label="Guidance Scale", value=3.5)
num_inference_steps = gr.Number(label="Inference Steps", value=15)
show_type = gr.Radio(label="Show Type",choices=["follow model image", "follow height & width", "all outputs"],value="follow model image")
auto_ar = gr.Checkbox(label="Detect Image Size(From Uploaded Images)", value=False, visible=True,)
btn = gr.Button("Generate")
with gr.Column():
output = gr.Image(label="Generated Image")
example_prompts = gr.Examples(
[
"<MODEL> a person with fashion garment. <GARMENT> a garment. <TARGET> model with fashion garment",
"<MODEL> a person with fashion garment. <TARGET> the same garment laid flat.",
"<GARMENT> The image shows a fashion garment. <TARGET> a smiling person with the garment in white background",
],
inputs=prompt,
label="Example Prompts",
# visible=False
)
example_model = gr.Examples(
examples=[
model1, model2, model3, model4
],
inputs=model_image,
label="Example Model Images"
)
example_garment = gr.Examples(
examples=[
garment1, garment2, garment3, garment4
],
inputs=garment_image,
label="Example Garment Images"
)
# Update dimensions when images change
model_image.change(fn=update_dimensions,
inputs=[model_image, garment_image, height, width, auto_ar],
outputs=[height, width])
garment_image.change(fn=update_dimensions,
inputs=[model_image, garment_image, height, width, auto_ar],
outputs=[height, width])
btn.click(fn=generate_image,
inputs=[prompt, model_image, garment_image, height, width, seed, guidance_scale, show_type, num_inference_steps],
outputs=output)
demo.title = "FLUX Image Generation Demo"
demo.description = "Generate images using FLUX model with LoRA"
examples = [
# tryon
[
'''<MODEL> a man <GARMENT> a medium-sized, short-sleeved, blue t-shirt with a round neckline and a pocket on the front. <TARGET> model with fashion garment''',
model1,
garment1,
576, 576
],
[
'''<MODEL> a man with gray hair and a beard wearing a black jacket and sunglasses, standing in front of a body of water with mountains in the background and a cloudy sky above <GARMENT> a black and white striped t-shirt with a red heart embroidered on the chest <TARGET> ''',
model2,
garment2,
576, 576
],
[
'''<MODEL> a person with fashion garment. <GARMENT> a garment. <TARGET> model with fashion garment''',
model3,
garment3,
576, 576
],
[
'''<MODEL> a woman lift up her right leg. <GARMENT> a pair of black and white patterned pajama pants. <TARGET> model with fashion garment''',
model4,
garment4,
576, 576
],
]
gr.Examples(
examples=examples,
inputs=[prompt, model_image, garment_image],
outputs=output,
fn=generate_image,
cache_examples=False,
examples_per_page=20
)
demo.queue().launch(share=False, show_error=False,
server_name="0.0.0.0"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--group_offloading', action="store_true")
args=parser.parse_args()
pipe = load_models(group_offloading=args.group_offloading)
launch_demo() |