Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from huggingface_hub import InferenceClient | |
from ttsmms import download, TTS | |
from langdetect import detect | |
import os | |
import wave | |
import numpy as np | |
# === Step 1: Load ASR Model === | |
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025" | |
processor = Wav2Vec2Processor.from_pretrained(asr_model_name) | |
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name) | |
# === Step 2: Load Text Generation Model === | |
client = InferenceClient("unsloth/gemma-3-1b-it") | |
def format_prompt(user_input): | |
return f"{user_input}" | |
# === Step 3: Load TTS Models === | |
swahili_dir = download("swh", "./data/swahili") | |
english_dir = download("eng", "./data/english") | |
swahili_tts = TTS(swahili_dir) | |
english_tts = TTS(english_dir) | |
# === Step 4: Generate silent fallback audio === | |
def create_silent_wav(filename="./error.wav", duration_sec=1.0, sample_rate=16000): | |
if not os.path.exists(filename): | |
silence = np.zeros(int(sample_rate * duration_sec), dtype=np.int16) | |
with wave.open(filename, 'w') as wf: | |
wf.setnchannels(1) | |
wf.setsampwidth(2) | |
wf.setframerate(sample_rate) | |
wf.writeframes(silence.tobytes()) | |
create_silent_wav() # Call once at startup | |
# === Step 5: Transcription Function === | |
def transcribe(audio_file): | |
try: | |
speech_array, sample_rate = torchaudio.load(audio_file) | |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
speech_array = resampler(speech_array).squeeze().numpy() | |
input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values | |
with torch.no_grad(): | |
logits = asr_model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
return transcription | |
except Exception as e: | |
print("ASR Error:", e) | |
return "[ASR Failed]" | |
# === Step 6: Text Generation Function === | |
def generate_text(prompt): | |
try: | |
formatted_prompt = format_prompt(prompt) | |
response = client.text_generation(formatted_prompt, max_new_tokens=250, temperature=0.7, top_p=0.95) | |
return response.strip() | |
except Exception as e: | |
print("Text Generation Error:", e) | |
return "[Text Generation Failed]" | |
# === Step 7: Text-to-Speech Function === | |
def text_to_speech(text): | |
lang = detect(text) | |
wav_path = "./output.wav" | |
try: | |
if lang == "sw": | |
swahili_tts.synthesis(text, wav_path=wav_path) | |
else: | |
english_tts.synthesis(text, wav_path=wav_path) | |
return wav_path | |
except Exception as e: | |
print("TTS Error:", e) | |
return "./error.wav" # Use fallback silent audio | |
# === Step 8: Combined Logic === | |
def process_audio(audio): | |
transcription = transcribe(audio) | |
generated_text = generate_text(transcription) | |
speech = text_to_speech(generated_text) | |
print(f"[DEBUG] Transcription: {transcription}") | |
print(f"[DEBUG] Generated Text: {generated_text}") | |
print(f"[DEBUG] TTS Output Path: {speech} (type={type(speech)})") | |
return transcription, generated_text, speech | |
# === Step 9: Gradio Interface === | |
with gr.Blocks() as demo: | |
gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR β Text Generation β TTS</p>") | |
gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>") | |
audio_input = gr.Audio(label="ποΈ Input Audio", type="filepath") | |
text_output = gr.Textbox(label="π Transcription") | |
generated_text_output = gr.Textbox(label="π€ Generated Text") | |
audio_output = gr.Audio(label="π Output Speech") | |
submit_btn = gr.Button("Submit") | |
submit_btn.click( | |
fn=process_audio, | |
inputs=audio_input, | |
outputs=[text_output, generated_text_output, audio_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() |