File size: 4,031 Bytes
eb87835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from huggingface_hub import InferenceClient
from ttsmms import download, TTS
from langdetect import detect
import os
import wave
import numpy as np

# === Step 1: Load ASR Model ===
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025"
processor = Wav2Vec2Processor.from_pretrained(asr_model_name)
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name)

# === Step 2: Load Text Generation Model ===
client = InferenceClient("unsloth/gemma-3-1b-it")
def format_prompt(user_input):
    return f"{user_input}"

# === Step 3: Load TTS Models ===
swahili_dir = download("swh", "./data/swahili")
english_dir = download("eng", "./data/english")
swahili_tts = TTS(swahili_dir)
english_tts = TTS(english_dir)

# === Step 4: Generate silent fallback audio ===
def create_silent_wav(filename="./error.wav", duration_sec=1.0, sample_rate=16000):
    if not os.path.exists(filename):
        silence = np.zeros(int(sample_rate * duration_sec), dtype=np.int16)
        with wave.open(filename, 'w') as wf:
            wf.setnchannels(1)
            wf.setsampwidth(2)
            wf.setframerate(sample_rate)
            wf.writeframes(silence.tobytes())

create_silent_wav()  # Call once at startup

# === Step 5: Transcription Function ===
def transcribe(audio_file):
    try:
        speech_array, sample_rate = torchaudio.load(audio_file)
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
        speech_array = resampler(speech_array).squeeze().numpy()
        input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values
        with torch.no_grad():
            logits = asr_model(input_values).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)[0]
        return transcription
    except Exception as e:
        print("ASR Error:", e)
        return "[ASR Failed]"

# === Step 6: Text Generation Function ===
def generate_text(prompt):
    try:
        formatted_prompt = format_prompt(prompt)
        response = client.text_generation(formatted_prompt, max_new_tokens=250, temperature=0.7, top_p=0.95)
        return response.strip()
    except Exception as e:
        print("Text Generation Error:", e)
        return "[Text Generation Failed]"

# === Step 7: Text-to-Speech Function ===
def text_to_speech(text):
    lang = detect(text)
    wav_path = "./output.wav"
    try:
        if lang == "sw":
            swahili_tts.synthesis(text, wav_path=wav_path)
        else:
            english_tts.synthesis(text, wav_path=wav_path)
        return wav_path
    except Exception as e:
        print("TTS Error:", e)
        return "./error.wav"  # Use fallback silent audio

# === Step 8: Combined Logic ===
def process_audio(audio):
    transcription = transcribe(audio)
    generated_text = generate_text(transcription)
    speech = text_to_speech(generated_text)
    print(f"[DEBUG] Transcription: {transcription}")
    print(f"[DEBUG] Generated Text: {generated_text}")
    print(f"[DEBUG] TTS Output Path: {speech} (type={type(speech)})")
    return transcription, generated_text, speech

# === Step 9: Gradio Interface ===
with gr.Blocks() as demo:
    gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR β†’ Text Generation β†’ TTS</p>")
    gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>")
    
    audio_input = gr.Audio(label="πŸŽ™οΈ Input Audio", type="filepath")
    text_output = gr.Textbox(label="πŸ“ Transcription")
    generated_text_output = gr.Textbox(label="πŸ€– Generated Text")
    audio_output = gr.Audio(label="πŸ”Š Output Speech")
    submit_btn = gr.Button("Submit")

    submit_btn.click(
        fn=process_audio,
        inputs=audio_input,
        outputs=[text_output, generated_text_output, audio_output]
    )

if __name__ == "__main__":
    demo.launch()