Futuresony commited on
Commit
3d1b72d
Β·
verified Β·
1 Parent(s): a500491

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -59
app.py CHANGED
@@ -1,83 +1,65 @@
1
- import gradio as gr
2
- import os
3
- import json
4
  import faiss
5
  import numpy as np
6
  import torch
7
  from sentence_transformers import SentenceTransformer
8
- from huggingface_hub import InferenceClient, hf_hub_download
 
 
9
 
10
  # πŸ”Ή Hugging Face Credentials
11
  HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
12
- HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
13
 
14
- # πŸ”Ή FAISS Index Path
15
  FAISS_PATH = "asa_faiss.index"
 
16
 
17
- # πŸ”Ή Load Sentence Transformer for Embeddings
18
- embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
19
-
20
- # πŸ”Ή Load FAISS Index from Hugging Face
21
- faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
22
  faiss_index = faiss.read_index(faiss_local_path)
 
23
 
24
- # πŸ”Ή Initialize Hugging Face Model Client
25
- client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
 
 
26
 
27
- # πŸ”Ή Retrieve Relevant FAISS Data
28
- def retrieve_faiss_knowledge(user_query, top_k=3):
29
- query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
30
- distances, indices = faiss_index.search(query_embedding, top_k)
31
 
32
- retrieved_texts = []
33
- for idx in indices[0]: # Extract top_k results
34
- if idx != -1: # Ensure valid index
35
- retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)")
36
-
37
- return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**"
38
-
39
- # πŸ”Ή Chatbot Response Function (Forcing FAISS Context)
40
- def respond(message, history, system_message, max_tokens, temperature, top_p):
41
- faiss_context = retrieve_faiss_knowledge(message)
42
 
43
- # πŸ”₯ Force the model to use FAISS
44
- full_prompt = f"""### System Instruction:
45
- You MUST use the provided FAISS data to generate your response.
46
- If no FAISS data is found, return "I don't have enough information."
47
 
48
- ### Retrieved FAISS Data:
49
- {faiss_context}
50
 
51
- ### User Query:
52
- {message}
 
53
 
54
- ### Response:
55
- """
56
 
57
- response = client.text_generation(
58
- full_prompt,
59
- max_new_tokens=max_tokens,
60
- temperature=temperature,
61
- top_p=top_p,
62
- )
63
 
64
- # βœ… Extract only the model-generated response
65
- cleaned_response = response.split("### Response:")[-1].strip()
66
 
67
- history.append((message, cleaned_response)) # βœ… Update chat history
 
 
 
 
 
 
 
 
68
 
69
- yield cleaned_response # βœ… Output the response
70
 
71
- # πŸ”Ή Gradio Chat Interface
72
- demo = gr.ChatInterface(
73
- respond,
74
- additional_inputs=[
75
- gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"),
76
- gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
77
- gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
78
- gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
79
- ],
80
- )
81
 
82
- if __name__ == "__main__":
83
- demo.launch()
 
 
 
 
 
1
  import faiss
2
  import numpy as np
3
  import torch
4
  from sentence_transformers import SentenceTransformer
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer
6
+ import gradio as gr
7
+ from huggingface_hub import hf_hub_download
8
 
9
  # πŸ”Ή Hugging Face Credentials
10
  HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
11
+ HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
12
 
13
+ # πŸ”Ή Paths
14
  FAISS_PATH = "asa_faiss.index"
15
+ DATASET_PATH = "responses.txt"
16
 
17
+ # πŸ”Ή Load FAISS Index
18
+ faiss_local_path = hf_hub_download(HF_REPO, FAISS_PATH, token=HF_TOKEN)
 
 
 
19
  faiss_index = faiss.read_index(faiss_local_path)
20
+ print("βœ… FAISS index loaded successfully!")
21
 
22
+ # πŸ”Ή Load Dataset Responses
23
+ with open(DATASET_PATH, "r", encoding="utf-8") as f:
24
+ dataset = f.readlines()
25
+ print("βœ… Responses dataset loaded!")
26
 
27
+ # πŸ”Ή Load Model & Tokenizer Correctly
28
+ tokenizer = AutoTokenizer.from_pretrained(HF_REPO, token=HF_TOKEN)
29
+ model = AutoModelForCausalLM.from_pretrained(HF_REPO, token=HF_TOKEN)
 
30
 
31
+ # πŸ”Ή Load Sentence Transformer (Ensures proper FAISS embedding match)
32
+ embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
 
 
 
 
 
 
 
 
33
 
34
+ # πŸ”Ή Adjust FAISS Threshold
35
+ THRESHOLD = 100 # Adjust based on actual FAISS distances
 
 
36
 
 
 
37
 
38
+ def embed(text):
39
+ """Convert text into FAISS-compatible vector using the same method as training."""
40
+ return embedder.encode([text], convert_to_tensor=True).cpu().numpy()
41
 
 
 
42
 
43
+ def chatbot_response(user_query):
44
+ """Fetch response from FAISS or generate with model if needed."""
45
+ query_vector = embed(user_query) # Convert input to vector
46
+ D, I = faiss_index.search(query_vector, k=1) # Search FAISS index
 
 
47
 
48
+ print(f"Closest FAISS match index: {I[0][0]}, Distance: {D[0][0]}") # Debugging info
 
49
 
50
+ if D[0][0] < THRESHOLD: # If FAISS match is good
51
+ response = dataset[I[0][0]].strip() # Retrieve FAISS response
52
+ print("βœ… FAISS response used!")
53
+ else:
54
+ # πŸ”₯ Fallback: Generate response with model
55
+ print("⚠️ FAISS match too weak, using model instead.")
56
+ inputs = tokenizer(user_query, return_tensors="pt")
57
+ outputs = model.generate(**inputs, max_new_tokens=150)
58
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
59
 
60
+ return response
61
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ # πŸ”Ή Gradio UI
64
+ iface = gr.Interface(fn=chatbot_response, inputs="text", outputs="text", title="ASA Microfinance Chatbot")
65
+ iface.launch()